Current File : //usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryfpu.code.tex
% Copyright 2008/2019 by Christian Feuersaenger
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU General Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\newif\ifpgfmathfloatparseactive
\newif\ifpgfmathfloat@scaleactive

% public macro which invokes '#1' if the fpu is installed and ready and '#2'
% otherwise.
\def\pgflibraryfpuifactive#1#2{%
    \ifpgfmathfloatparseactive
        #1%
    \else
        #2%
    \fi
}%

\pgfqkeys{/pgf}{
    % enable the FPU parser if it is not yet active
    %
    % It will be deactivated after the current TeX group
    fpu/.is choice,
    fpu/true/.code={%
        \ifpgfmathfloatparseactive
        \else
            \pgfutil@ifundefined{pgfmathdeclarefunction}{%
                % Ohoh - we are running on a TeX distribution with
                % PGF 2.00 which doesn't have the new math engine.
                % I can provide special treatment here, provided that
                % all float commands are still able to run (that means
                % more information needs to be copied from the pgf cvs
                % to pgf 2.00 - for example pgfmathfloat.code.tex).
                %
                % I employ this to work with pgfplots and pgf 2.00
                % using all new features.
                \pgfmathfloat@parser@install@pgf@two@null@null%
            }{%
                \pgfmathfloat@parser@install%
            }%
            \pgfmathfloatparseactivetrue
            % improve compatibility with Marks FP library:
            \pgfkeysalso{/pgf/fixed point arithmetic/.prefix style={/pgf/fpu=false}}%
        \fi
    },%
    fpu/false/.code={%
        \ifpgfmathfloatparseactive
            \pgfmathfloat@uninstall%
            \pgfmathfloatparseactivefalse
        \fi
    },%
    fpu/.default=true,
    % Use this to introduce a result scaling.
    % Every expression in which the prefix '*' occurs
    % will be multiplied with the result and converted to fixed point
    % representation.
    fpu/scale results/.code={%
        \ifpgfmathfloatparseactive
            \pgfmathparse{#1}%
        \else
            \pgfmathfloatparsenumber{#1}%
        \fi
        \let\pgfmathfloatscale=\pgfmathresult%
    },%
    % determines the output format of each complete expression parsing
    % process. If 'scale results' is active, 'fixed' is assumed
    % automatically.
    fpu/output format/.is choice,
    fpu/output format/float/.code=    {%
        \def\pgfmathfloatparse@output@choice{Y}%
        \let\pgfmathfloatparse@output=\relax
    },
    fpu/output format/sci/.code=    {%
        \def\pgfmathfloatparse@output@choice{S}%
        \def\pgfmathfloatparse@output{\pgfmathfloattosci@{\pgfmathresult}}%
    },
    fpu/output format/fixed/.code=    {%
        \def\pgfmathfloatparse@output@choice{F}%
        \def\pgfmathfloatparse@output{\pgfmathfloattofixed@{\pgfmathresult}}%
    },
    fpu/output format/float,
    fpu/rel thresh/.code={%
        \pgfmathfloatparsenumber{#1}%
        \let\pgfmathfloat@relthresh=\pgfmathresult
    },
    fpu/rel thresh=1e-4,
    fpu/install only/.code={
        \edef\pgf@list{#1}%
        \pgfutil@for\pgf@temp:=\pgf@list\do{%
            \expandafter\pgfmath@float@install@singlefunction\expandafter{%
                \romannumeral-`0\expandafter\pgfutil@trimspaces\expandafter{\pgf@temp}}%
        }%
    },
}%

\pgfmathfloatcreate{1}{1.0}{0}\let\pgfmathfloatscale=\pgfmathresult

\let\pgfmathfloatone=\pgfmathresult

% This is the replacement parser invocation.
% It does two things which are different to \pgfmathparse:
% 1. it disables any dimension dependent scalings,
% 2. it implements the 'scale results' feature.
\def\pgfmathfloatparse{%
    \begingroup%
        % disable any dimension-dependant scalings:
        \let\pgfmathpostparse=\relax%
        \pgfmath@catcodes%
        \pgfmath@quickparsefalse%
        \ifpgfmathfloatparseactive\else
          \pgfmathfloat@parser@install
        \fi
        \pgfmathfloatparse@}%

% for pgf 2.00 :
\def\pgfmathfloatparse@pgf@two@null@null{%
    \pgfmath@quickparsefalse%
    \pgfmathfloatparse@}%

\def\pgfmathfloatparse@#1{%
    \edef\pgfmathfloat@expression{#1}%
    \expandafter\pgfmathfloatparse@@\pgfmathfloat@expression\pgfmathfloat@
    \ifpgfmathfloat@scaleactive
        \expandafter\pgfmathfloatmultiply@\expandafter{\pgfmathresult}{\pgfmathfloatscale}%
        \pgfmathfloattofixed{\pgfmathresult}%
    \else
        \pgfmathfloatparse@output
    \fi
    \ignorespaces
}%

\def\pgfmathfloat@char@asterisk{*}%
\def\pgfmathfloatparse@@#1#2\pgfmathfloat@{%
    \def\pgfmathfloat@test{#1}%
    \ifx\pgfmathfloat@test\pgfmathfloat@char@asterisk%
        \def\pgfmathfloat@expression{#2}%
        \pgfmathfloat@scaleactivetrue
    \fi%
    \expandafter\pgfmathparse@\expandafter{\pgfmathfloat@expression}%
    % \endgroup provided by \pgfpathmarse@end
}%

% Crude handling of file plots
%
\pgfkeys{/pgf/fpu/.cd,
  scale file plot x/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscalex{\pgfmathresult*},
  scale file plot y/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscaley{\pgfmathresult*},
  scale file plot z/.code=\pgfmathfloatparse{#1}\edef\pgfmathfloatplotscalez{\pgfmathresult*}
}%

\def\pgfmathfloat@uninstall@appendcmd#1{%
    \expandafter\gdef\expandafter\pgfmathfloat@uninstall\expandafter{\pgfmathfloat@uninstall #1}%
}%

% If the uninstall command is already assembled, it will skip the
% uninstall assemblation.
\def\pgfmathfloat@plots@checkuninstallcmd{%
    \pgfutil@ifundefined{pgfmathfloat@uninstall}{%
        \global\let\pgfmathfloat@uninstall=\pgfutil@empty
    }{%
        % We already HAVE an uninstall command (prepared globally).
        % So: don't waste time assembling one!
        \def\pgfmathfloat@uninstall@appendcmd##1{}%
        \def\pgfmathfloat@prepareuninstallcmd##1{}%
    }%
}%

% This assembles an uninstall command globally ON FIRST USAGE.
% See \pgfmathfloat@plots@checkuninstallcmd
\def\pgfmathfloat@prepareuninstallcmd#1{%
    % and store backup information (globally - I don't want to do that
    % all the time when the FPU is used!):
    \expandafter\global\expandafter\let\csname pgfmathfloat@backup@\string#1\endcsname=#1%
    \expandafter\gdef\expandafter\pgfmathfloat@uninstall\expandafter{\pgfmathfloat@uninstall
        \expandafter\let\expandafter#1\csname pgfmathfloat@backup@\string#1\endcsname%
    }%
}%

\def\pgfmathfloat@install#1=#2{%
    \pgfmathfloat@prepareuninstallcmd{#1}%
    \let#1=#2%
}%
\def\pgfmathfloat@install@csname#1#2{%
    \expandafter\pgfmathfloat@prepareuninstallcmd\csname #1\endcsname%
    \pgfutil@namelet{#1}{#2}%
}%
\def\pgfmathfloat@install@unimplemented#1{%
    \expandafter\pgfmathfloat@prepareuninstallcmd\csname pgfmath#1@\endcsname%
    \expandafter\def\csname pgfmath#1@\endcsname##1{\pgfmathfloat@notimplemented{#1}}%
}%
\def\pgfmathfloat@plots@install{%
    \let\pgfmathfloatplotscalex=\pgfutil@empty
    \let\pgfmathfloatplotscaley=\pgfutil@empty
    \let\pgfmathfloatplotscalez=\pgfutil@empty
    \pgfmathfloat@install\pgf@parsexyline=\pgfmathfloat@parsexyline%
    \pgfmathfloat@install\pgf@parsexyzline=\pgfmathfloat@parsexyzline%
}%
\def\pgfmathfloat@parsexyline#1 #2 #3\pgf@stop{%
    \edef\pgfmathfloat@marshal{%
        \noexpand\pgfplotstreampoint{\noexpand\pgfpointxy{\pgfmathfloatplotscalex#1}{\pgfmathfloatplotscaley#2}}%
    }%
    \pgfmathfloat@marshal%
}%
\def\pgfmathfloat@parsexyzline#1 #2 #3 #4\pgf@stop{%
  \edef\pgfmathfloat@marshal{%
        \noexpand\pgfplotstreampoint{%
            \noexpand\pgfpointxyz{\pgfmathfloatplotscalex#1}{\pgfmathfloatplotscaley#2}{\pgfmathfloatplotscalez#3}%
        }%
    }%
    \pgfmathfloat@marshal%
}%

%
\def\pgfmathfloat@parser@install@functions{%
    % Install float commands...
    %
    \pgfmathfloat@install\pgfmathadd@=\pgfmathfloatadd@%
    \pgfmathfloat@install\pgfmathsubtract@=\pgfmathfloatsubtract@%
    \pgfmathfloat@install\pgfmathneg@=\pgfmathfloatneg@%
    \pgfmathfloat@install\pgfmathmultiply@=\pgfmathfloatmultiply@%
    \pgfmathfloat@install\pgfmathdivide@=\pgfmathfloatdivide@%
    \pgfmathfloat@install\pgfmathabs@=\pgfmathfloatabs@%
    \pgfmathfloat@install\pgfmathsign@=\pgfmathfloatsign@%
    \pgfmathfloat@install\pgfmathround@=\pgfmathfloatround@%
    \pgfmathfloat@install\pgfmathfloor@=\pgfmathfloatfloor@%
    \pgfmathfloat@install\pgfmathceil@=\pgfmathfloatceil@
    \pgfmathfloat@install\pgfmathint@=\pgfmathfloatint@
    \pgfmathfloat@install\pgfmathmod@=\pgfmathfloatmod@%
    \pgfmathfloat@install\pgfmathmax@=\pgfmathfloatmax@%
    \pgfmathfloat@install\pgfmathmin@=\pgfmathfloatmin@%
    \pgfmathfloat@install\pgfmathsin@=\pgfmathfloatsin@%
    \pgfmathfloat@install\pgfmathcos@=\pgfmathfloatcos@%
    \pgfmathfloat@install\pgfmathtan@=\pgfmathfloattan@%
    \pgfmathfloat@install\pgfmathdeg@=\pgfmathfloatdeg@%
    \pgfmathfloat@install\pgfmathrad@=\pgfmathfloatrad@%
    \pgfmathfloat@install\pgfmathatan@=\pgfmathfloatatan@%
    \pgfmathfloat@install\pgfmathasin@=\pgfmathfloatasin@%
    \pgfmathfloat@install\pgfmathacos@=\pgfmathfloatacos@%
    \pgfmathfloat@install\pgfmathcot@=\pgfmathfloatcot@%
    \pgfmathfloat@install\pgfmathsec@=\pgfmathfloatsec@%
    \pgfmathfloat@install\pgfmathcosec@=\pgfmathfloatcosec@%
    \pgfmathfloat@install\pgfmathexp@=\pgfmathfloatexp@%
    \pgfmathfloat@install\pgfmathln@=\pgfmathfloatln@%
    \pgfmathfloat@install@csname{pgfmathlog10@}{pgfmathfloatlog10@}%
    \pgfmathfloat@install@csname{pgfmathlog2@}{pgfmathfloatlog2@}%
    \pgfmathfloat@install\pgfmathsqrt@=\pgfmathfloatsqrt@%
    \pgfmathfloat@install\pgfmath@pi=\pgfmathfloatpi@%
    \pgfmathfloat@install\pgfmathpi=\pgfmathfloatpi@%
    \pgfmathfloat@install\pgfmathe@=\pgfmathfloate@%
    \pgfmathfloat@install\pgfmathe=\pgfmathfloate@%
    \pgfmathfloat@install\pgfmathlessthan@=\pgfmathfloatlessthan@%
    \pgfmathfloat@install\pgfmathnotless@=\pgfmathfloatnotless@%
    \pgfmathfloat@install\pgfmathnotgreater@=\pgfmathfloatnotgreater@%
    \pgfmathfloat@install\pgfmathless@=\pgfmathfloatlessthan@%
    \pgfmathfloat@install\pgfmathgreaterthan@=\pgfmathfloatgreaterthan@%
    \pgfmathfloat@install\pgfmathgreater@=\pgfmathfloatgreaterthan@%
    \pgfmathfloat@install\pgfmathifthenelse@=\pgfmathfloatifthenelse@%
    \pgfmathfloat@install\pgfmathequal@=\pgfmathfloatequal@%
    \pgfmathfloat@install\pgfmathequalto@=\pgfmathfloatequal@%
    \pgfmathfloat@install\pgfmathnotequal@=\pgfmathfloatnotequal@%
    \pgfmathfloat@install\pgfmathnotequalto@=\pgfmathfloatnotequal@%
    \pgfmathfloat@install\pgfmathpow@=\pgfmathfloatpow@
    \pgfmathfloat@install\pgfmathrand@=\pgfmathfloatrand@
    \pgfmathfloat@install\pgfmathrand=\pgfmathfloatrand@
    \pgfmathfloat@install\pgfmathrnd@=\pgfmathfloatrnd@
    \pgfmathfloat@install\pgfmathrnd=\pgfmathfloatrnd@
    \pgfmathfloat@install\pgfmathtrue@=\pgfmathfloattrue@
    \pgfmathfloat@install\pgfmathfalse@=\pgfmathfloatfalse@
    \pgfmathfloat@install\pgfmathnot@=\pgfmathfloatnot@
    \pgfmathfloat@install\pgfmathhex@=\pgfmathfloathex@
    \pgfmathfloat@install\pgfmathHex@=\pgfmathfloatHex@
    \pgfmathfloat@install\pgfmathoct@=\pgfmathfloatoct@
    \pgfmathfloat@install\pgfmathbin@=\pgfmathfloatbin@
    \pgfmathfloat@install\pgfmathand@=\pgfmathfloatand@
    \pgfmathfloat@install\pgfmathor@=\pgfmathfloator@
    \pgfmathfloat@install\pgfmathfactorial@=\pgfmathfloatfactorial@
    \pgfmathfloat@install\pgfmathveclen@=\pgfmathfloatveclen@
    \pgfmathfloat@install\pgfmathcosh@=\pgfmathfloatcosh@
    \pgfmathfloat@install\pgfmathsinh@=\pgfmathfloatsinh@
    \pgfmathfloat@install\pgfmathtanh@=\pgfmathfloattanh@
    \pgfmathfloat@install\pgfmath@iftrue=\pgfmathfloat@iftrue%
    \expandafter\pgfmathfloat@install\csname pgfmathatan2@\endcsname=\pgfmathfloatatantwo@
    \pgfmathfloat@install@unimplemented{isprime}%
    \pgfmathfloat@install@unimplemented{iseven}%
    \pgfmathfloat@install@unimplemented{isodd}%
    \pgfmathfloat@install@unimplemented{gcd}%
    \pgfmathfloat@install@unimplemented{frac}%
    \pgfmathfloat@install@unimplemented{random}%
    \pgfmathfloat@install@unimplemented{setseed}%
    \pgfmathfloat@install@unimplemented{Mod}%
    \pgfmathfloat@install@unimplemented{div}%
    \pgfmathfloat@install@unimplemented{real}%
%    \pgfmathfloat@install@unimplemented{height}%
    %
    %
    \pgfmathfloat@install\pgfmathscientific=\pgfmathfloatscientific%
}%

\def\pgfmath@float@install@singlefunction#1{%
    \ifcsname pgfmath@function@#1\endcsname\else
        \pgfmath@error{The function `#1' does not exist}{}%
    \fi
    \pgfmath@toks={}%
    \pgfmathloop
    \ifnum\pgfmathcounter>\csname pgfmath@operation@#1@arity\endcsname\relax%
    \else
        \expandafter\pgfmath@addto@toks\expandafter{\pgfmath@char@hash}%
        \expandafter\pgfmath@addto@toks\expandafter{\pgfmathcounter}%
    \repeatpgfmathloop
    \edef\pgfmath@head{\noexpand\def\expandafter\noexpand\csname pgfmath#1@\endcsname\the\pgfmath@toks}%
    \pgfmath@toks={}%
    \def\pgfmath@arguments{}%
    \pgfmathloop
    \ifnum\pgfmathcounter>\csname pgfmath@operation@#1@arity\endcsname\relax%
    \else
        \pgfmath@addto@toks{\pgfmathfloatparsenumber}%
        \expandafter\expandafter\expandafter\pgfmath@addto@toks
            \expandafter\expandafter\expandafter{\expandafter\expandafter\expandafter
                {\expandafter\pgfmath@char@hash\pgfmathcounter}}%
        \pgfmath@addto@toks{\let}%
        \expandafter\pgfmath@addto@toks\expandafter{%
            \csname pgfmath@argument@\pgfmathcounter\endcsname=\pgfmathresult}%
        \expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter
            \pgfmath@arguments\expandafter\expandafter\expandafter{\expandafter
                \pgfmath@arguments\expandafter{\csname pgfmath@argument@\pgfmathcounter\endcsname}}%
    \repeatpgfmathloop
    \expandafter\pgfmath@addto@toks\expandafter{\csname pgfmathfloat#1@\expandafter\endcsname\pgfmath@arguments}%
    \pgfmath@addto@toks{\pgfmathfloattofixed{\pgfmathresult}}%
    \edef\pgfmath@body{{\the\pgfmath@toks}}%
    \expandafter\pgfmath@head\pgfmath@body
}

\def\pgfmathfloat@iftrue{%
    \if Y\pgfmathfloatparse@output@choice
        \let\pgfmathfloat@@iftrue@v=\pgfmathfloatone
        \let\pgfmathfloat@@iftrue@next=\pgfmathfloat@iftrue@
    \else
        \if S\pgfmathfloatparse@output@choice
            \def\pgfmathfloat@@iftrue@v{1.0e0}%
            \let\pgfmathfloat@@iftrue@next=\pgfmathfloat@iftrue@
        \else
            \def\pgfmath@next{\pgfutilifstartswith{1.0}}%
            \expandafter\pgfmath@next\expandafter{\pgfmathresult}{%
                \ifdim\pgfmathresult pt=1.0pt %
                    \let\pgfmathfloat@@iftrue@next=\pgfutil@firstoftwo
                \else
                    \let\pgfmathfloat@@iftrue@next=\pgfutil@secondoftwo
                \fi
            }{%
                \let\pgfmathfloat@@iftrue@next=\pgfutil@secondoftwo
            }%
        \fi
    \fi
    \pgfmathfloat@@iftrue@next%
}%
\def\pgfmathfloat@iftrue@{%
    \ifx\pgfmathresult\pgfmathfloat@@iftrue@v
        \let\pgfmath@next=\pgfutil@firstoftwo
    \else
        \let\pgfmath@next=\pgfutil@secondoftwo
    \fi
    \pgfmath@next%
}%

\def\pgfmathfloat@parser@install{%
    \pgfmathfloat@plots@checkuninstallcmd
    \pgfmathfloat@plots@install%
    \pgfmathfloat@parser@install@functions
    %
    %
    %
    % The following methods actually enable the parser to work with
    % the internal floating point number representation.
    %
    % The idea is as follows:
    % 1. Every operand must be given in internal float representation.
    % 2. The internal float repr can be distinguished by a normal
    % number. This is accomplished by introducing a new "exponent"
    % token.
    % 3. The stack-push-operation checks whether the argument is a
    % float. If not, it is parsed properly before pushing it.
    \pgfmath@tokens@make{exponent}{\pgfmathfloat@POSTFLAGSCHAR}%
    \pgfmathfloat@uninstall@appendcmd{%
        \expandafter\let\csname pgfmath@token@exponent@\pgfmathfloat@POSTFLAGSCHAR\endcsname=\relax
    }%
    \let\pgfmath@basic@parse@exponent=\pgfmath@parse@exponent%
    \let\pgfmath@basic@stack@push@operand=\pgfmath@stack@push@operand
    \pgfmathfloat@install\pgfmath@stack@push@operand=\pgfmathfloat@stack@push@operand
    \pgfmathfloat@install\pgfmath@parse@operand@quote=\pgfmathfloat@parse@operand@quote
    \pgfmathfloat@install\pgfmath@parse@exponent=\pgfmathfloat@parse@float@or@exponent
    %
    \pgfmathfloat@install\pgfmathparse=\pgfmathfloatparse%
    %\pgfmathfloat@install\pgfmathparse@trynumber@token=\pgfmathfloat@parse@trynumber@token
    \pgfmathfloat@install\pgfmathparse@expression@is@number=\pgfmathfloat@parse@expression@is@number
}%

% This here might bring speed improvements... if implemented
% correctly.
% However, this heuristics might fail in cases like "1+1" vs "1e+1" ...
%\def\pgfmathfloat@parse@trynumber@token{numericfpu}
%\pgfmath@tokens@make{numericfpu}{eE+-Y.0123456789}

\def\pgfmathfloat@parse@expression@is@number{%
    \pgfmathfloatparsenumber{\pgfmath@expression}%
    \pgfmath@smuggleone\pgfmathresult%
  \endgroup
  \ignorespaces
}%

\def\pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG#1{%
    \edef\pgfmathfloat@loc@TMPa{%
        \noexpand\def\expandafter\noexpand\csname pgfmath@parsefunction@#1\endcsname{%
            \noexpand\let\noexpand\pgfmath@parsepostgroup\expandafter\noexpand\csname pgfmath@parsefunction@#1@\endcsname%
            \noexpand\expandafter\noexpand\pgfmath@parse@}%
        \noexpand\def\expandafter\noexpand\csname pgfmath@parsefunction@#1@\endcsname{%
            \noexpand\expandafter\expandafter\noexpand\csname pgfmath#1@\endcsname\noexpand\expandafter{\noexpand\pgfmathresult}%
            \noexpand\pgfmath@postfunction%
        }%
    }%
    \pgfmathfloat@loc@TMPa
}%
\def\pgfmathfloat@parser@install@pgf@two@null@null{%
    \pgfmathfloat@plots@checkuninstallcmd
    \pgfmathfloat@plots@install%
    \pgfmathfloat@parser@install@functions
    \let\pgfmathrand@=\pgfmath@basic@rand@
    \let\pgfmathrnd@=\pgfmath@basic@rnd@
    \pgfmathfloat@install\pgfmathmax@=\pgfmathfloatmaxtwo%
    \pgfmathfloat@install\pgfmathmin@=\pgfmathfloatmintwo%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{factorial}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{hex}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{bin}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{oct}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{tanh}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{sinh}%
    \pgfmathfloat@defineadapter@for@pgf@two@null@null@ONEARG{cosh}%
    %
    % The following methods actually enable the parser to work with
    % the internal floating point number representation.
    %
    % The idea is as follows:
    % 1. Every operand must be given in internal float representation.
    % 2. The internal float repr can be distinguished by a normal
    % number. This is accomplished by introducing a new "exponent"
    % token.
    % 3. The stack-push-operation checks whether the argument is a
    % float. If not, it is parsed properly before pushing it.
    \let\pgfmath@basic@parsedecimalpoint=\pgfmath@parsedecimalpoint%
    \let\pgfmath@basic@stack@push@operand=\pgfmath@stackpushoperand
    \pgfmathfloat@install\pgfmath@stackpushoperand=\pgfmathfloat@stack@push@operand
    \pgfmathfloat@install\pgfmath@parsedecimalpoint=\pgfmathfloat@parsedecimalpoint@pgf@two@null@null
    \pgfmathfloat@install\pgfmath@endparse=\pgfmathfloat@endparse@pgf@two@null@null
    \pgfmathfloat@install\pgfmath@endparsegroup=\pgfmathfloat@endparsegroup@pgf@two@null@null
    \pgfmathfloat@install\pgfmath@postfunction=\pgfmathfloat@postfunction@pgf@two@null@null
    \pgfmathfloat@install\pgfmath@@parseoperandgroup=\pgfmathfloat@@parseoperandgroup
    %
    \pgfmathfloat@install\pgfmathparse=\pgfmathfloatparse@pgf@two@null@null%
}%

\pgfutil@ifundefined{pgfmathdeclarefunction}{%
    % BACKWARDS COMPATIBILITY: We have PGF 2.00 :
    \def\pgfmathdeclarepseudoconstant#1#2{%
        \begingroup
        \toks0=\expandafter{\csname pgfmath#1@\endcsname}%
        \toks1={\pgfmath@postfunction}%
        \xdef\pgfmathfloat@glob@TMP{\the\toks0 \the\toks1 }%
        \xdef\pgfmathfloat@glob@TMPb{\the\toks0 }%
        \endgroup
        \expandafter\let\csname pgfmath@parsefunction@#1\endcsname=\pgfmathfloat@glob@TMP
        \expandafter\let\csname pgfmath#1\endcsname=\pgfmathfloat@glob@TMPb
        \expandafter\def\csname pgfmath#1@\endcsname{#2}%
    }%
    \let\pgfmathredeclarepseudoconstant=\pgfmathdeclarepseudoconstant
}{%
    \pgfutil@ifundefined{pgfmathdeclarepseudoconstant}{%
        \def\pgfmathdeclarepseudoconstant#1#2{\pgfmathdeclarefunction*{#1}{0}{#2}}
    }{}%
}%

\pgfmathdeclarepseudoconstant{inf}{\def\pgfmathresult{inf}}%
\pgfmathdeclarepseudoconstant{INF}{\def\pgfmathresult{inf}}%
\pgfmathdeclarepseudoconstant{Inf}{\def\pgfmathresult{inf}}%
\pgfmathdeclarepseudoconstant{infty}{\def\pgfmathresult{inf}}%
\pgfmathdeclarepseudoconstant{nan}{\def\pgfmathresult{nan}}%
\pgfmathdeclarepseudoconstant{NaN}{\def\pgfmathresult{nan}}%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Hacks to the basic level pgf math engine:
%
% WARNING: These methods rely heavily on the internal float representation!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% for pgf2.00 :
\def\pgfmathfloat@parsedecimalpoint@pgf@two@null@null#1{%
    \expandafter\ifx\pgfmathfloat@POSTFLAGSCHAR#1% check whether it is a float
        \let\pgfmath@next=\pgfmathfloat@return@float@pgf@two@null@null%
    \else
        \def\pgfmath@next{\pgfmath@basic@parsedecimalpoint#1}%
    \fi
    \pgfmath@next
}%
% for pgf2.00:
\def\pgfmathfloat@return@float@pgf@two@null@null#1]{%
    \edef\pgfmathresult{\the\c@pgfmath@parsecounta\pgfmathfloat@POSTFLAGSCHAR#1]}%
    \let\pgfmath@resulttemp=\pgfmathresult
    \pgfmath@parseoperator%
}%
% for pgf2.00:
\def\pgfmathfloat@endparse@pgf@two@null@null#1\pgfmath@empty{%
    \pgfmath@processalloperations%
    \pgfmath@stackpop{\pgfmathresult}%
    % delete the final unit scalings
    \pgfmath@smuggleone{\pgfmathresult}%
  \endgroup%
  \ignorespaces%
}%
% for pgf2.00:
\def\pgfmathfloat@endparsegroup@pgf@two@null@null{%
        \pgfmath@processalloperations%
        \pgfmath@stackpop{\pgfmathresult}%
        % eliminated register usage here...
        \pgfmath@smuggleone{\pgfmathresult}%
    \endgroup%
    \pgfmath@parsepostgroup%
}%
% for pgf2.00:
\def\pgfmathfloat@postfunction@pgf@two@null@null{%
    \let\pgfmath@parsepostgroup\pgfmath@parseoperator%
    \ifnum\pgfmath@sign1<0
        \pgfmathfloatneg@{\pgfmathresult}%
        \let\pgfmath@sign\pgfutil@empty
    \fi
    \pgfmath@parseoperator}%
% for pgf2.00:
\def\pgfmathfloat@@parseoperandgroup{%
    \let\pgfmath@postparsegroup\pgfmath@parseoperator%
    \ifnum\pgfmath@sign1<0
        \pgfmathfloatneg@{\pgfmathresult}%
        \let\pgfmath@sign\pgfutil@empty
    \fi
    \pgfmath@parseoperator%
}%






% PRECONDITION:
% either
%     <number>e
%             ^
%     -> read the exponent.
% or
%   <sign>\pgfmathfloat@POSTFLAGSCHAR
%         ^
%   -> we have a parsed floating point number -> read it.
\def\pgfmathfloat@parse@float@or@exponent{%
    \if\pgfmath@token \pgfmathfloat@POSTFLAGSCHAR%
        % Ok, we actually HAVE a pre-parsed floating point number!
        % Return it.
        \expandafter\pgfmathfloat@return@float\expandafter\pgfmath@token@next
    \else
        % We have a standard number in scientific format. Parse it.
        \expandafter\pgfmath@basic@parse@exponent
    \fi
}%
\def\pgfmathfloat@return@float#1]{%
    \edef\pgfmathresult{\pgfmath@number \pgfmathfloat@POSTFLAGSCHAR#1]}%
    \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathresult}%
    \pgfmath@parse@@operator%
}%

\def\pgfmathfloat@parse@operand@quote#1"{%
  \edef\pgfmathresult{\pgfmath@fpu@stringmarker #1}%
  \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathresult}%
  \pgfmath@parse@@operator%
}

\def\pgfmath@fpu@stringmarker{@@str@@:}%

% This extends the functionality of the basic level operand stack: it
% assures every element on the stack is a float.
\def\pgfmathfloat@stack@push@operand#1{%
    \pgfutil@ifnextchar\bgroup{%
        \let\pgfmathfloat@stack@push@operand@list@=\pgfutil@empty
        \pgfmathfloat@stack@push@operand@list
    }{%
        \pgfmathfloat@stack@push@operand@single
    }%
    #1\relax
}%

\def\pgfmathfloat@stack@push@operand@single#1\relax{%
    \expandafter\pgfutil@in@\pgfmathfloat@POSTFLAGSCHAR{#1}%
    \ifpgfutil@in@
        \pgfmath@basic@stack@push@operand{#1}%
    \else
        \expandafter\pgfutil@in@\expandafter{\pgfmath@fpu@stringmarker}{#1}%
        \ifpgfutil@in@
            \pgfmathfloat@stack@push@operand@single@str#1\relax
        \else
            \pgfmathfloatparsenumber{#1}%
            \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathresult}%
        \fi
    \fi
}%

\expandafter\def\expandafter\pgfmathfloat@stack@push@operand@single@str\pgfmath@fpu@stringmarker #1\relax{%
    \pgfmath@basic@stack@push@operand{#1}%
}%

\def\pgfmathfloat@stack@push@operand@GOBBLE#1\relax{}%
\def\pgfmathfloat@stack@push@operand@list#1{%
    \expandafter\pgfutil@in@ \pgfmathfloat@POSTFLAGSCHAR{#1}%
    \ifpgfutil@in@
        \expandafter\def\expandafter\pgfmathfloat@stack@push@operand@list@\expandafter{%
            \pgfmathfloat@stack@push@operand@list@{#1}%
        }%
    \else
        \pgfmathfloatparsenumber{#1}%
        \begingroup
        \toks0=\expandafter{\pgfmathfloat@stack@push@operand@list@}%
        \toks1=\expandafter{\pgfmathresult}%
        \xdef\pgfmathfloat@glob@TMP{\the\toks0 {\the\toks1}}%
        \endgroup
        \let\pgfmathfloat@stack@push@operand@list@=\pgfmathfloat@glob@TMP
    \fi
    \pgfutil@ifnextchar\relax{%
        \expandafter\pgfmath@basic@stack@push@operand\expandafter{\pgfmathfloat@stack@push@operand@list@}%
        \pgfmathfloat@stack@push@operand@GOBBLE
    }{%
        \pgfmathfloat@stack@push@operand@list
    }%
}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% --- END --- Hacks to the basic level pgf math engine
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Here starts the implementation of the floating point
% routines.
%
% They can be used even if the FPU parser is not active.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Remember the basic math commands. They will be invoked as subroutines in floating point routines.
\let\pgfmath@basic@add@=\pgfmathadd@
\let\pgfmath@basic@subtract@=\pgfmathsubtract@
\let\pgfmath@basic@multiply@=\pgfmathmultiply@
\let\pgfmath@basic@divide@=\pgfmathdivide@
\let\pgfmath@basic@reciprocal@=\pgfmathreciprocal@
\let\pgfmath@basic@abs@=\pgfmathabs@
\let\pgfmath@basic@round@=\pgfmathround@
\let\pgfmath@basic@rand@=\pgfmathrand@
\let\pgfmath@basic@rnd@=\pgfmathrnd@
\let\pgfmath@basic@setseed@=\pgfmathsetseed@
\let\pgfmath@basic@random@=\pgfmathrandom@
\let\pgfmath@basic@floor@=\pgfmathfloor@
\let\pgfmath@basic@ceil@=\pgfmathceil@
\let\pgfmath@basic@mod@=\pgfmathmod@
\let\pgfmath@basic@max@=\pgfmathmax@
\let\pgfmath@basic@min@=\pgfmathmin@
\let\pgfmath@basic@sin@=\pgfmathsin@
\let\pgfmath@basic@cos@=\pgfmathcos@
\let\pgfmath@basic@tan@=\pgfmathtan@
\let\pgfmath@basic@deg@=\pgfmathdeg@
\let\pgfmath@basic@rad@=\pgfmathrad@
\let\pgfmath@basic@atan@=\pgfmathatan@
\let\pgfmath@basic@asin@=\pgfmathasin@
\let\pgfmath@basic@acos@=\pgfmathacos@
\let\pgfmath@basic@cot@=\pgfmathcot@
\let\pgfmath@basic@sec@=\pgfmathsec@
\let\pgfmath@basic@cosec@=\pgfmathcosec@
\let\pgfmath@basic@pow@=\pgfmathpow@
\let\pgfmath@basic@exp@=\pgfmathexp@
\let\pgfmath@basic@ln@=\pgfmathln@
\let\pgfmath@basic@sqrt@=\pgfmathsqrt@
\let\pgfmath@basic@@pi=\pgfmath@pi
\let\pgfmath@basic@veclen@=\pgfmathveclen@
\let\pgfmath@basic@e@=\pgfmathe@
\let\pgfmath@basic@lessthan@=\pgfmathlessthan@
\let\pgfmath@basic@greaterthan@=\pgfmathgreaterthan@
\let\pgfmath@basic@equalto@=\pgfmathequalto@
\let\pgfmath@basic@equal@=\pgfmathequal@
\let\pgfmath@basic@true@=\pgfmathtrue@
\let\pgfmath@basic@false@=\pgfmathfalse@

\def\pgfmathfloatscientific#1#2{%
    \edef\pgfmathresult{#1e#2}%
    \expandafter\pgfmathfloatparsenumber\expandafter{\pgfmathresult}%
}%
% Compares #1 with #2 and sets \pgfmathresult either to 1.0 or 0.0.
%
% It also sets the boolean \ifpgfmathfloatcomparison (globally).
\def\pgfmathfloatlessthan@#1#2{%
%\def\pgfmathfloatlessthan#1#2#3\and#4#5#6{%
    \global\pgfmathfloatcomparisonfalse
    \begingroup
    \edef\pgfmathfloat@loc@TMPa{#1}%
    \edef\pgfmathfloat@loc@TMPb{#2}%
    \expandafter\pgfmathfloat@decompose\pgfmathfloat@loc@TMPa\relax\pgfmathfloat@a@S\pgfmathfloat@a@M\pgfmathfloat@a@E
    \expandafter\pgfmathfloat@decompose\pgfmathfloat@loc@TMPb\relax\pgfmathfloat@b@S\pgfmathfloat@b@M\pgfmathfloat@b@E
    \ifcase\pgfmathfloat@a@S
        % x = 0 -> (x<y <=> y >0)
        \ifcase\pgfmathfloat@b@S
            % y = 0
        \or% y > 0
            \global\pgfmathfloatcomparisontrue
        \or% y < 0
        \or% y = nan
        \or% y = + infty
            \global\pgfmathfloatcomparisontrue
        \or% y = -infty
        \fi
    \or
        % x > 0 -> (x<y <=> ( y > 0 && |x| < |y|) )
        \ifcase\pgfmathfloat@b@S
            % y = 0
        \or% y>0:
            \pgfmathfloatlessthan@positive
        \or% y < 0
        \or% y = nan
        \or% y = + infty
            \global\pgfmathfloatcomparisontrue
        \or% y = -infty
        \fi
    \or
        % x < 0 -> (x<y <=> (y >= 0 ||   |x| > |y|) )
        \ifcase\pgfmathfloat@b@S
            % y = 0
            \global\pgfmathfloatcomparisontrue
        \or%y > 0
            \global\pgfmathfloatcomparisontrue
        \or% 'y<0':
            \pgfmathfloatgreaterthan@positive
        \or% y = nan
        \or% y = + infty
            \global\pgfmathfloatcomparisontrue
        \or% y = -infty
        \fi
    \or
        % x = nan.
    \or
        % x = +infty
    \or
        % x = -infty
        \ifnum\pgfmathfloat@b@S=3
        \else
            \global\pgfmathfloatcomparisontrue
        \fi
    \fi
    \endgroup
    \ifpgfmathfloatcomparison
        \def\pgfmathresult{1.0}%
    \else
        \def\pgfmathresult{0.0}%
    \fi
}%
\let\pgfmathfloatlessthan=\pgfmathfloatlessthan@
\let\pgfmathfloatless@=\pgfmathfloatlessthan@

% ! (#1 < #2)  <=>  (#1 >= #2)
\def\pgfmathfloatnotless@#1#2{%
    \pgfmathfloatless@{#1}{#2}%
    \ifpgfmathfloatcomparison
        \def\pgfmathresult{0.0}%
    \else
        \def\pgfmathresult{1.0}%
    \fi
}%
% ! (#1 > #2)  <=>  (#1 <= #2)
\def\pgfmathfloatnotgreater@#1#2{%
    \pgfmathfloatless@{#2}{#1}%
    \ifpgfmathfloatcomparison
        \def\pgfmathresult{0.0}%
    \else
        \def\pgfmathresult{1.0}%
    \fi
}%

% compares \pgfmathfloat@a@[SME] < \pgfmathfloat@b@[SME]
\def\pgfmathfloatlessthan@positive{%
    \ifnum\pgfmathfloat@a@E<\pgfmathfloat@b@E
        \global\pgfmathfloatcomparisontrue
    \else
        \ifnum\pgfmathfloat@a@E=\pgfmathfloat@b@E
            \ifdim\pgfmathfloat@a@M<\pgfmathfloat@b@M
                \global\pgfmathfloatcomparisontrue
            \fi
        \fi
    \fi
}%

% compares \pgfmathfloat@a@[SME] > \pgfmathfloat@b@[SME]
\def\pgfmathfloatgreaterthan@positive{%
    \ifnum\pgfmathfloat@a@E>\pgfmathfloat@b@E
        \global\pgfmathfloatcomparisontrue
    \else
        \ifnum\pgfmathfloat@a@E=\pgfmathfloat@b@E
            \ifdim\pgfmathfloat@a@M>\pgfmathfloat@b@M
                \global\pgfmathfloatcomparisontrue
            \fi
        \fi
    \fi
}%


\def\pgfmathfloatgreaterthan@#1#2{\pgfmathfloatlessthan@{#2}{#1}}%
\let\pgfmathfloatgreaterthan=\pgfmathfloatgreaterthan@
\let\pgfmathfloatgreater@=\pgfmathfloatgreaterthan@

\def\pgfmathfloatmax@#1{%
    \begingroup
        \pgfmathfloatcreate{2}{1.0}{2147483644}%
        \let\pgfmathmaxsofar=\pgfmathresult
        \pgfmathfloatmax@@#1{}%
}%
\def\pgfmathfloatmax@@#1{%
    \def\pgfmath@temp{#1}%
    \ifx\pgfmath@temp\pgfmath@empty%
        \expandafter\pgfmathfloatmax@@@%
    \else%
        \pgfmathfloatlessthan{\pgfmathmaxsofar}{#1}%
        \ifpgfmathfloatcomparison
            \edef\pgfmathmaxsofar{#1}%
        \fi
        \expandafter\pgfmathfloatmax@@%
    \fi%
}%
\def\pgfmathfloatmax@@@{%
    \let\pgfmathresult=\pgfmathmaxsofar
    \pgfmath@smuggleone{\pgfmathresult}%
    \endgroup
}%
\def\pgfmathfloatmin@#1{%
    \begingroup
        \pgfmathfloatcreate{1}{1.0}{2147483644}%
        \let\pgfmathminsofar=\pgfmathresult
        \pgfmathfloatmin@@#1{}%
}%
\def\pgfmathfloatmin@@#1{%
    \def\pgfmath@temp{#1}%
    \ifx\pgfmath@temp\pgfmath@empty%
        \expandafter\pgfmathfloatmin@@@%
    \else%
        \pgfmathfloatlessthan{#1}{\pgfmathminsofar}%
        \ifpgfmathfloatcomparison
            \edef\pgfmathminsofar{#1}%
        \fi
        \expandafter\pgfmathfloatmin@@%
    \fi%
}%
\def\pgfmathfloatmin@@@{%
    \let\pgfmathresult=\pgfmathminsofar
    \pgfmath@smuggleone{\pgfmathresult}%
    \endgroup
}%

\def\pgfmathfloatmaxtwo#1#2{%
    \pgfmathfloatlessthan{#1}{#2}%
    \ifpgfmathfloatcomparison
        \edef\pgfmathresult{#2}%
    \else
        \edef\pgfmathresult{#1}%
    \fi
}%
\let\pgfmathfloatmax=\pgfmathfloatmaxtwo

\def\pgfmathfloatmintwo#1#2{%
    \pgfmathfloatlessthan{#1}{#2}%
    \ifpgfmathfloatcomparison
        \edef\pgfmathresult{#1}%
    \else
        \edef\pgfmathresult{#2}%
    \fi
}%
\let\pgfmathfloatmin=\pgfmathfloatmintwo

% Renormalizes #1 to extended precision mantissa, meaning
% 100 <= m < 1000
% instead of 1 <= m < 10.
%
% The 'extended precision' means we have higher accuracy when we apply pgfmath operations to mantissas.
%
% The input argument is expected to be a normalized floating point number; the output argument is a non-normalized floating point number (well, normalized to extended precision).
%
% The operation is supposed to be very fast.
%
% @see \pgfmathfloatsetextprecision
%
% There is a routine for internal usage,
% \pgfmathfloattoextentedprecision@a. It also provides exponent and
% sign of #1 in output arguments and may be used to increase speed.
\def\pgfmathfloattoextentedprecision#1{%
    \begingroup
    \pgfmathfloattoextentedprecision@a{#1}%
    \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\pgfmathresult}{\the\pgfmathfloat@a@E}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

\def\pgfmathfloattoextentedprecision@@zero#1\pgfmathfloat@EOI{%
    \edef\pgfmathresult{#1}%
}%
\def\pgfmathfloattoextentedprecision@@one#1.#2#3\pgfmathfloat@EOI{%
    \edef\pgfmathresult{#1#2.#3}%
}%
\def\pgfmathfloattoextentedprecision@@two#1.#2#3#4\pgfmathfloat@EOI{%
    \edef\pgfmathresult{#1#2#3.#4}%
}%
\def\pgfmathfloattoextentedprecision@@three#1.#2#3#4#5\pgfmathfloat@EOI{%
    \edef\pgfmathresult{#1#2#3#4.#5}%
}%

% Sets extended precision to 10^#1.
%
% The different choices are
%
% - 0:  normalization      0 <= m < 1 (disable extended precision)
% - 1:  normalization     10 <= m < 100
% - 2:  normalization    100 <= m < 1000  (default)
% - 3:  normalization   1000 <= m < 10000
%
% #1 is the exponent, #1 = 0,1,2 or 3.
%
% This setting applies to \pgfmathfloattoextentedprecision and friends.
\def\pgfmathfloatsetextprecision#1{%
    \ifcase#1\relax
        \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@zero
        \def\pgfmathfloatextprec@shift{0}%
    \or
        \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@one
        \def\pgfmathfloatextprec@shift{1}%
    \or
        \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@two
        \def\pgfmathfloatextprec@shift{2}%
    \else
        \let\pgfmathfloattoextentedprecision@@=\pgfmathfloattoextentedprecision@@three
        \def\pgfmathfloatextprec@shift{3}%
    \fi
}%
\pgfmathfloatsetextprecision{2}%

% Does the "hard" work for \pgfmathfloattoextentedprecision. It
% provides additional outputs.
%
% INPUT:
% #1  normalized floating point number. Maybe a macro (it will be expanded ONCE)
%
% OUTPUT:
% - \pgfmathresult : the mantissa in extended precision
% - \pgfmathfloat@a@S : the sign of #1
% - \pgfmathfloat@a@E : the exponent of #1, adjusted for extended precision
% - \pgfmathfloat@a@Mtok : undefined (its contents will be destroyed.
%
\def\pgfmathfloattoextentedprecision@a#1{%
    \edef\pgfmathresult{#1}%
    \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \ifnum\pgfmathfloat@a@S<3
        \advance\pgfmathfloat@a@E by-\pgfmathfloatextprec@shift\relax% compensate for shift
        \expandafter\pgfmathfloattoextentedprecision@@\the\pgfmathfloat@a@Mtok 000\pgfmathfloat@EOI
    \fi
}%


% Similar to \pgfmathfloattoextentedprecision@a, this one here fills the '@b' registers.
\def\pgfmathfloattoextentedprecision@b#1{%
    \edef\pgfmathresult{#1}%
    \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@b@S\pgfmathfloat@a@Mtok\pgfmathfloat@b@E
    \ifnum\pgfmathfloat@b@S<3
        \advance\pgfmathfloat@b@E by-\pgfmathfloatextprec@shift\relax
        \expandafter\pgfmathfloattoextentedprecision@@\the\pgfmathfloat@a@Mtok 00\pgfmathfloat@EOI
    \fi
}%

% Addition of two floating point numbers using 8 significant digits.
\def\pgfmathfloatadd@#1#2{%
    \begingroup
    %
    % renormalize argument to 100 <= m < 1000 for extended accuracy:
    \pgfmathfloattoextentedprecision@a{#1}%
    \let\pgfmathfloat@arga=\pgfmathresult
    %
    \pgfmathfloattoextentedprecision@b{#2}%
    \let\pgfmathfloat@argb=\pgfmathresult
    %
    \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases.
    \ifcase\pgfmathfloat@a@S
        \edef\pgfmathresult{#2}%
        \pgfmathfloatcomparisonfalse
    \or
    \or
        \edef\pgfmathfloat@arga{-\pgfmathfloat@arga}%
    \else
        \pgfmathfloatcomparisonfalse
        \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{0.0}{0}%
    \fi
    \ifcase\pgfmathfloat@b@S
        \edef\pgfmathresult{#1}%
        \pgfmathfloatcomparisonfalse
    \or
    \or
        \edef\pgfmathfloat@argb{-\pgfmathfloat@argb}%
    \else
        \pgfmathfloatcomparisonfalse
        \pgfmathfloatcreate{\the\pgfmathfloat@b@S}{0.0}{0}%
    \fi
    \ifpgfmathfloatcomparison
        % Shift lesser mantisse to fit the larger one:
        \ifnum\pgfmathfloat@a@E<\pgfmathfloat@b@E
            \pgfmathfloatadd@shift{\pgfmathfloat@arga}{\pgfmathfloat@a@E}{\pgfmathfloat@b@E}%
        \else
            \pgfmathfloatadd@shift{\pgfmathfloat@argb}{\pgfmathfloat@b@E}{\pgfmathfloat@a@E}%
        \fi
        % add them!
        \pgfmath@basic@add@{\pgfmathfloat@arga}{\pgfmathfloat@argb}%
        % renormalize sum. This is the only part were an expensive routine comes into play:
        \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}%
        \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

% #1= floating point number
% #2= TeX code to execute if #1 == 0
% #3= TeX code to execute if #1 != 0
\def\pgfmathfloatifzero#1#2#3{%
    \pgfmathfloatgetflagstomacro{#1}\pgfmathfloat@loc@TMPa
    \if\pgfmathfloat@loc@TMPa0 #2\else#3\fi
}%

\def\pgfmathfloatiffinite#1#2#3{%
    \pgfmathfloatgetflagstomacro{#1}\pgfmathfloatiffinite@
    \ifnum\pgfmathfloatiffinite@>2 #3\else #2\fi
}%

\def\pgfmathfloatifthenelse@#1#2#3{%
    \pgfmathfloatifflags{#1}{0}{%
        \edef\pgfmathresult{#3}%%
    }{%
        \edef\pgfmathresult{#2}%
    }%
}%
\def\pgfmathfloatequal@#1#2{%
    \pgfmathfloatifapproxequalrel{#1}{#2}{%
        \def\pgfmathresult{1}%
        \pgfmathfloatcomparisontrue
    }{%
        \def\pgfmathresult{0}%
        \pgfmathfloatcomparisonfalse
    }%
}%
\let\pgfmathfloatequalto@=\pgfmathfloatequal@

\def\pgfmathfloatnotequal@#1#2{%
    \pgfmathfloatifapproxequalrel{#1}{#2}{%
        \def\pgfmathresult{0}%
        \pgfmathfloatcomparisonfalse
    }{%
        \def\pgfmathresult{1}%
        \pgfmathfloatcomparisontrue
    }%
}%
\let\pgfmathfloatnotequalto@=\pgfmathfloatnotequal@

% Computes the relative error between #1 and #2 (assuming #2 != 0) and
% invokes #3 if the relative error is below `/pgf/fpu/rel thresh' and
% #4 if that is not the case.
\long\def\pgfmathfloatifapproxequalrel#1#2#3#4{%
    \begingroup
    \pgfmathfloatparsenumber{#1}%
    \let\pgfmathfloatarga=\pgfmathresult
    \pgfmathfloatparsenumber{#2}%
    \let\pgfmathfloatargb=\pgfmathresult
    \pgfmathfloatrelerror@\pgfmathfloatarga\pgfmathfloatargb
    \let\pgfmathfloatarga=\pgfmathresult
    \pgfmathfloatlessthan@\pgfmathfloatarga\pgfmathfloat@relthresh
    \ifpgfmathfloatcomparison
        \def\pgfmathfloat@loc@TMPa{#3}%
    \else
        \def\pgfmathfloat@loc@TMPa{#4}%
    \fi
    \expandafter\endgroup
    \pgfmathfloat@loc@TMPa
}%

% Invokes code '#3' if the flags of the floating point number '#1'
% match the flag provided in '#2'.
%
% \pgfmathfloatcreate{1}{1.0}{2}
% \pgfmathfloatifflags{\pgfmathresult}{0}{It's zero!}{It's not zero!}%
% \pgfmathfloatifflags{\pgfmathresult}{1}{It's positive!}{It's not positive!}%
% \pgfmathfloatifflags{\pgfmathresult}{2}{It's negative!}{It's not negative!}%
% or, equivalently
% \pgfmathfloatifflags{\pgfmathresult}{+}{It's positive!}{It's not positive!}%
% \pgfmathfloatifflags{\pgfmathresult}{-}{It's negative!}{It's not negative!}%
% it also supports #2=u which means 'unbounded'
\def\pgfmathfloatifflags#1#2#3#4{%
    \if#2-%
        \pgfmathfloatifflags{#1}{2}{#3}{#4}%
    \else
        \if#2+%
            \pgfmathfloatifflags{#1}{1}{#3}{#4}%
        \else
            \pgfmathfloatgetflagstomacro{#1}\pgfmathfloat@loc@TMPa
            \if#2u%
                \ifnum\pgfmathfloat@loc@TMPa>2
                    #3\relax
                \else
                    #4\relax
                \fi
            \else
                \if\pgfmathfloat@loc@TMPa#2%
                    #3\relax
                \else
                    #4\relax
                \fi
            \fi
        \fi
    \fi
}%

% #1=mantissa which needs to be shifted (with smaller exponent)
% #2=smaller exponent
% #3=larger exponent
%
% ATTENTION: this helper method DESTROYS contents of \pgfmathfloat@a@S.
\def\pgfmathfloatadd@shift#1#2#3{%
    \pgf@xa=#1 pt%
    \pgfmathfloat@a@S=#3\relax
    \advance\pgfmathfloat@a@S by-#2\relax
    \ifcase\pgfmathfloat@a@S
    \or
        \divide\pgf@xa by10\relax
    \or
        \divide\pgf@xa by100\relax
    \or
        \divide\pgf@xa by1000\relax
    \or
        \divide\pgf@xa by10000\relax
    \or
        \divide\pgf@xa by10000\relax
        \divide\pgf@xa by10\relax
    \or
        \divide\pgf@xa by10000\relax
        \divide\pgf@xa by100\relax
    \or
        \divide\pgf@xa by10000\relax
        \divide\pgf@xa by1000\relax
    \or
        \divide\pgf@xa by10000\relax
        \divide\pgf@xa by10000\relax
    \else
        \pgf@xa=0pt%
    \fi
    #2=#3\relax
    \edef#1{\pgf@sys@tonumber\pgf@xa}%
}%

\let\pgfmathfloatadd=\pgfmathfloatadd@


% Subtracts two floating point numbers.
\def\pgfmathfloatsubtract@#1#2{%
    \begingroup
    \edef\pgfmathresult{#2}%
    \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@b@S\pgfmathfloat@a@Mtok\pgfmathfloat@b@E
    \ifcase\pgfmathfloat@b@S
        \edef\pgfmathresult{#1}%
    \or
        \pgfmathfloatcreate{2}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@b@E}%
        \let\pgfmathfloatsub@arg=\pgfmathresult
        \pgfmathfloatadd@{#1}{\pgfmathfloatsub@arg}%
    \or
        \pgfmathfloatcreate{1}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@b@E}%
        \let\pgfmathfloatsub@arg=\pgfmathresult
        \pgfmathfloatadd@{#1}{\pgfmathfloatsub@arg}%
    \else
        \pgfmathfloatcreate{\the\pgfmathfloat@b@S}{0.0}{0}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

\let\pgfmathfloatsubtract=\pgfmathfloatsubtract@

% Scales a floating point number #1 with a fixed point number #2 using pgfmathmultiply.
%
% Use this method if #2 is small number.
\def\pgfmathfloatmultiplyfixed@#1#2{%
    \begingroup
    %
    % renormalize argument to 100 <= m < 1000 for extended accuracy:
    \pgfmathfloattoextentedprecision@a{#1}%
    \let\pgfmathfloat@arga=\pgfmathresult
    %
    \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases.
    \ifcase\pgfmathfloat@a@S
        \edef\pgfmathresult{#1}%
        \pgfmathfloatcomparisonfalse
    \or
    \or
        \edef\pgfmathfloat@arga{-\pgfmathfloat@arga}%
    \else
        \pgfmathfloatcomparisonfalse
        \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{0.0}{0}%
    \fi
    \ifpgfmathfloatcomparison
        \pgfmath@basic@multiply@{\pgfmathfloat@arga}{#2}%
        % renormalize product. This is the only part were an expensive routine comes into play:
        \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}%
        \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

\let\pgfmathfloatmultiplyfixed=\pgfmathfloatmultiplyfixed@


\def\pgfmathfloatmultiply@#1#2{%
    \begingroup
    \pgfmathfloatsetextprecision{1}%
    \pgfmathfloattoextentedprecision@a{#1}%
    \let\pgfmathfloat@arga=\pgfmathresult
    %
    \pgfmathfloattoextentedprecision@b{#2}%
    \let\pgfmathfloat@argb=\pgfmathresult
    %
    \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases.
    \ifcase\pgfmathfloat@a@S
    % 0
        \pgfmathfloatcreate{0}{0.0}{0}%
        \pgfmathfloatcomparisonfalse
    \or% +
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \def\pgfmathresult@S{1}%
        \or
            \def\pgfmathresult@S{2}%
        \else
            \expandafter\pgfmathfloatcreate\the\pgfmathfloat@b@S{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \or% -
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \def\pgfmathresult@S{2}%
        \or
            \def\pgfmathresult@S{1}%
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \or% nan
        \pgfmathfloatcreate{3}{0.0}{0}%
        \pgfmathfloatcomparisonfalse
    \or% +infty
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \or% -infty
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \fi
    \ifpgfmathfloatcomparison
        \pgfmath@basic@multiply@{\pgfmathfloat@arga}{\pgfmathfloat@argb}%
        \advance\pgfmathfloat@a@E by\pgfmathfloat@b@E
        % renormalize sum. This is the only part were an expensive routine comes into play:
        \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}%
        \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}%
        \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
        \pgfmathfloatcreate{\pgfmathresult@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatmultiply=\pgfmathfloatmultiply@

% Defines \pgfmathresult to be #1 / #2 for two floating point numbers.
%
% It employs the basic math engine internally to divide mantissas.
\def\pgfmathfloatdivide@#1#2{%
    \begingroup
    \pgfmathfloatsetextprecision{1}% is not too important, I think. After all, 0.1 <= #1/#2 < 10 or so due to normalization (no matter, which)
    \edef\pgfmathfloat@arga{#1}%
    \pgfmathfloattoextentedprecision@a{\pgfmathfloat@arga}%
    \let\pgfmathfloat@arga=\pgfmathresult
    %
    \edef\pgfmathfloat@argb{#2}%
    \pgfmathfloattoextentedprecision@b{\pgfmathfloat@argb}%
    \let\pgfmathfloat@argb=\pgfmathresult
    %
    \pgfmathfloatcomparisontrue% re-use this boolean here to handle special cases.
    \ifcase\pgfmathfloat@a@S
    % 0
        \pgfmathfloatcreate{0}{0.0}{0}%
        \pgfmathfloatcomparisonfalse
    \or% +
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \def\pgfmathresult@S{1}%
        \or
            \def\pgfmathresult@S{2}%
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \else
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \or% -
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \def\pgfmathresult@S{2}%
        \or
            \def\pgfmathresult@S{1}%
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \else
            \pgfmathfloatcreate{0}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \or% nan
        \pgfmathfloatcreate{3}{0.0}{0}%
        \pgfmathfloatcomparisonfalse
    \or% +infty
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}% what is inf/inf ?
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}% or inf/-inf ?
            \pgfmathfloatcomparisonfalse
        \fi
    \or% -infty
        \ifcase\pgfmathfloat@b@S
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{3}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{5}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \or
            \pgfmathfloatcreate{4}{0.0}{0}%
            \pgfmathfloatcomparisonfalse
        \fi
    \fi
    \ifpgfmathfloatcomparison
        \pgfmath@basic@divide@{\pgfmathfloat@arga}{\pgfmathfloat@argb}%
        \advance\pgfmathfloat@a@E by-\pgfmathfloat@b@E
        % renormalize. This is the only part were an expensive float routine comes into play:
        \edef\pgfmathresult{\pgfmathresult e\the\pgfmathfloat@a@E}%
        \expandafter\pgfmathfloatqparsenumber\expandafter{\pgfmathresult}%
        % And re-insert the proper sign:
        \expandafter\pgfmathfloat@decompose@tok\pgfmathresult\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
        \pgfmathfloatcreate{\pgfmathresult@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatdivide=\pgfmathfloatdivide@

\def\pgfmathfloatreciprocal@#1{%
    \begingroup
    % FIXME optimize
    \edef\pgfmathfloat@loc@TMPa{#1}%
    \pgfmathfloatcreate{1}{1.0}{0}%
    \pgfmathfloatdivide@{\pgfmathresult}{\pgfmathfloat@loc@TMPa}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

% Computes sqrt(#1) in floating point arithmetics.
%
% It employs sqrt( m * 10^e ) = sqrt(m) * sqrt(10^e).
\def\pgfmathfloatsqrt@#1{%
    \begingroup
    \pgfmathfloatsetextprecision{3}%
    \edef\pgfmathfloat@arga{#1}%
    \pgfmathfloattoextentedprecision@a{\pgfmathfloat@arga}%
    \let\pgfmathfloat@arga=\pgfmathresult
    %
    \ifcase\pgfmathfloat@a@S
    % 0
        \pgfmathfloatcreate{0}{0.0}{0}%
    \or% +
        \pgfmath@basic@sqrt@{\pgfmathfloat@arga}%
        \ifodd\pgfmathfloat@a@E
            \ifnum\pgfmathfloat@a@E>0
                \expandafter\pgfmath@basic@multiply@\expandafter{\pgfmathresult}{3.16227766}% * sqrt(10)
            \else
                \expandafter\pgfmath@basic@multiply@\expandafter{\pgfmathresult}{0.316227766}% * sqrt(0.1)
            \fi
        \fi
        \divide\pgfmathfloat@a@E by2 % sqrt(10^e) = 10^{e/2} (see above for odd e)
        % renormalize sum. This is the only part were an expensive routine comes into play:
        \edef\pgfmathfloat@arga{\pgfmathresult e\the\pgfmathfloat@a@E}%
        \pgfmathfloatqparsenumber{\pgfmathfloat@arga}%
    \or% -
        \pgfmathfloatcreate{3}{0.0}{0}%
    \or% nan
        \pgfmathfloatcreate{3}{0.0}{0}%
    \or% +infty
        \pgfmathfloatcreate{4}{0.0}{0}%
    \or% -infty
        \pgfmathfloatcreate{3}{0.0}{0}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatsqrt=\pgfmathfloatsqrt@

% Returns the integer part of the floating point number #1.
%
% The result is returned as floating point as well.
%
% This operation is not limited to TeX's range of count registers (it
% works symbolly)
%
% @see \pgfmathfloattoint
% POSTCONDITION: \pgfmathresult contains the result and
%    \pgfmathfloatintwasnoop=1 if there was nothing to do
%   \pgfmathfloatintwasnoop=0 if there where non-zero digits after the period
%   \pgfmathfloatintwasnoop=2 if there where digits after the period. The digits will be stored in \pgfmathfloatintremainder in this case.
\def\pgfmathfloatint@#1{%
    \begingroup
    \edef\pgfmathfloatint@input{#1}%
    \expandafter\pgfmathfloat@decompose@tok\pgfmathfloatint@input\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \gdef\pgfmathfloatintwasnoop{1}%
    \gdef\pgfmathfloatintremainder{}%
    \ifcase\pgfmathfloat@a@S
        % 0: nothing to do.
    \or% +
        \expandafter\pgfmathfloatint@@\the\pgfmathfloat@a@Mtok\pgfmathfloat@EOI
        \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \or% -
        \expandafter\pgfmathfloatint@@\the\pgfmathfloat@a@Mtok\pgfmathfloat@EOI
        \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \else
        % nothing to do
    \fi
    %\message{ XXXXX int(\pgfmathfloatint@input) = \pgfmathresult -> was no op = \pgfmathfloatintwasnoop\space (remainder \pgfmathfloatintremainder)^^J}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\def\pgfmathfloatint@@#1.{%
    \ifnum\pgfmathfloat@a@E<0
        \pgfmathfloat@a@S=0
        \pgfmathfloat@a@Mtok={0.0}%
        \pgfmathfloat@a@E=0
        \gdef\pgfmathfloatintwasnoop{0}%
        \expandafter\pgfmathfloatint@@loop@gobble
    \else
        \pgfmathfloat@a@Mtok={#1.}%
        \pgfmathfloat@b@E=\pgfmathfloat@a@E
        \expandafter\pgfmathfloatint@@loop
    \fi
}%
\def\pgfmathfloatint@@loop#1{%
    \def\pgfmathfloatint@@loop@{#1}%
    \ifx\pgfmathfloatint@@loop@\pgfmathfloat@EOI
        \gdef\pgfmathfloatintwasnoop{1}%
        \let\pgfmathfloatint@@loop@next=\relax
    \else
        \ifnum\pgfmathfloat@b@E=0
            \def\pgfmathfloatint@@loop@next{\pgfmathfloatint@@loop@gobble#1}%
        \else
            \pgfmathfloat@a@Mtok=\expandafter{\the\pgfmathfloat@a@Mtok#1}%
            \advance\pgfmathfloat@b@E by-1
            \let\pgfmathfloatint@@loop@next=\pgfmathfloatint@@loop
        \fi
    \fi
    \pgfmathfloatint@@loop@next
}%
\def\pgfmathfloatint@@loop@gobble#1\pgfmathfloat@EOI{%
    \if0\pgfmathfloatintwasnoop
    \else
        \gdef\pgfmathfloatintwasnoop{2}%
        \gdef\pgfmathfloatintremainder{#1}%
    \fi
}%
\let\pgfmathfloatint=\pgfmathfloatint@

\def\pgfmathfloatfloor#1{%
    \edef\pgfmath@orig{#1}%
    \pgfmathfloatint@{#1}%
    \pgfmathfloatifflags{\pgfmath@orig}{2}{%
        \let\pgfmath@trunc=\pgfmathresult
        \ifcase\pgfmathfloatintwasnoop\relax
            % ah - we stripped something! Round DOWN
            \pgfmathfloatcreate{2}{1.0}{0}% -1
            \expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfmath@trunc}%
        \or
            % was no-op
            \let\pgfmathresult=\pgfmath@trunc
        \else
            % ok, we have to inspect the remainder:
            \pgfmathfloatparsenumber{0.\pgfmathfloatintremainder}%
            \pgfmathfloatifflags{\pgfmathresult}{1}{%
                % ah - we stripped a non-zero remainder! Round DOWN
                \pgfmathfloatcreate{2}{1.0}{0}% -1
                \expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfmath@trunc}%
            }{%
                % was no-op
                \let\pgfmathresult=\pgfmath@trunc
            }%
        \fi
    }{}%
}%
\let\pgfmathfloatfloor@=\pgfmathfloatfloor

\def\pgfmathfloatceil#1{%
    \edef\pgfmath@orig{#1}%
    \pgfmathfloatint@{#1}%
    \pgfmathfloatifflags{\pgfmath@orig}{1}{%
        \let\pgfmath@trunc=\pgfmathresult
        \ifcase\pgfmathfloatintwasnoop\relax
            % ah - we stripped something! Round UP
            \pgfmathfloatcreate{1}{1.0}{0}% +1
            \expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfmath@trunc}%
        \or
            % was no-op
            \let\pgfmathresult=\pgfmath@trunc
        \else
            % ok, we have to inspect the remainder:
            \pgfmathfloatparsenumber{0.\pgfmathfloatintremainder}%
            \pgfmathfloatifflags{\pgfmathresult}{1}{%
                % ah - we stripped a non-zero remainder! Round UP
                \pgfmathfloatcreate{1}{1.0}{0}% +1
                \expandafter\pgfmathfloatadd@\expandafter{\pgfmathresult}{\pgfmath@trunc}%
            }{%
                % was no-op
                \let\pgfmathresult=\pgfmath@trunc
            }%
        \fi
    }{}%
}%
\let\pgfmathfloatceil@=\pgfmathfloatceil

\def\pgfmathfloat@notimplemented#1{%
    \pgfmath@error{Sorry, the operation '#1' has not yet been implemented in the floating point unit}{}%
    \pgfmathfloatcreate{0}{0.0}{0}%
}%

% Divides or multiplies the input number by 10^#4 using an arithmetic
% left/right shift.
%
% Input:
% #1 a normalised floating point number.
% #2 a positive or negative integer number denoting the shift.
%
% Example:
% \pgfmathfloatshift{11e3}{4}%
% -> pgfmathresult = 11e7
\def\pgfmathfloatshift@#1#2{%
    \begingroup
    \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \advance\pgfmathfloat@a@E by#2\relax
    \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatshift=\pgfmathfloatshift@

% Defines \pgfmathresult to be |#1|, the absolute value of the
% normalized floating point number #1.
\def\pgfmathfloatabs@#1{%
    \begingroup
    \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \ifcase\pgfmathfloat@a@S
        % 0: do nothing.
    \or
        % +: ok, is positive.
    \or
        % -: multiply with -1:
        \pgfmathfloat@a@S=1
    \or
        % nan: do nothing.
    \or
        % +infty: ok.
    \or
        % -infty: multiply with -1:
        \pgfmathfloat@a@S=4
    \fi
    \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
%
% Defines \pgfmathresult to be sign(#1)
\def\pgfmathfloatsign@#1{%
    \begingroup
    \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \ifcase\pgfmathfloat@a@S
        % 0:
        \pgfmathfloatcreate{0}{0.0}{0}%
    \or
        % +: ok, is positive.
        \pgfmathfloatcreate{1}{1.0}{0}%
    \or
        % -:
        \pgfmathfloatcreate{2}{1.0}{0}%
    \or
        % nan: do nothing.
        \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \or
        % +infty:.
        \pgfmathfloatcreate{1}{1.0}{0}%
    \or
        % -infty:
        \pgfmathfloatcreate{2}{1.0}{0}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatsign=\pgfmathfloatsign@

% Computes the absolute error |#1 - #2| into \pgfmathresult.
\def\pgfmathfloatabserror@#1#2{%
    \pgfmathfloatsubtract@{#1}{#2}%
    \pgfmathfloatabs@{\pgfmathresult}%
}%
\let\pgfmathfloatabserror=\pgfmathfloatabserror@

% Computes the relative error |#1 - #2|/|#2| into \pgfmathresult,
% assuming #2 != 0.
\def\pgfmathfloatrelerror@#1#2{%
    \pgfmathfloatsubtract@{#1}{#2}%
    \let\pgfmathfloat@subtract=\pgfmathresult
    \pgfmathfloatifflags{#2}{0}{%
        \let\pgfmathresult=\pgfmathfloat@subtract
    }{%
        \pgfmathfloatdivide@{\pgfmathfloat@subtract}{#2}%
    }%
    \pgfmathfloatabs@{\pgfmathresult}%
}%
\let\pgfmathfloatrelerror=\pgfmathfloatrelerror@

% Computes \pgfmathresult = #1 mod #2 using truncated division.
%
\def\pgfmathfloatmod@#1#2{%
    \begingroup
    \pgfmathfloattoint{#1}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloattoint{#2}%
    \let\pgfmathfloat@loc@TMPb=\pgfmathresult
    \c@pgfmath@counta=\pgfmathfloat@loc@TMPa\relax
    \divide\c@pgfmath@counta by\pgfmathfloat@loc@TMPb\relax
    \expandafter\pgfmathfloatparsenumber\expandafter{\the\c@pgfmath@counta}%
    %
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{#2}%
    \let\pgfmathfloat@loc@TMPb=\pgfmathresult
    \pgfmathfloatsubtract@{#1}{\pgfmathfloat@loc@TMPb}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatmod=\pgfmathfloatmod@


% A modification of \pgfmathfloatmod@ where #3 = 1/#2 is already
% known. This may be faster.
\def\pgfmathfloatmodknowsinverse@#1#2#3{%
    \pgfmathfloatmod@{#1}{#2}%
    %--------------------------------------------------
    % \begingroup
    % % FIXME : is this function correct? \pgfmathfloatmod had a
    % % rounding flaw...
    % \pgfmathfloatmultiply@{#1}{#3}%
    % \pgfmathfloatint@{\pgfmathresult}%
    % \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    % \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{#2}%
    % \let\pgfmathfloat@loc@TMPb=\pgfmathresult
    % \pgfmathfloatsubtract@{#1}{\pgfmathfloat@loc@TMPb}%
    % \pgfmath@smuggleone\pgfmathresult
    % \endgroup
    %--------------------------------------------------
}%
\let\pgfmathfloatmodknowsinverse=\pgfmathfloatmodknowsinverse@

\def\pgfmathfloatpi@{%
    \pgfmathfloatcreate{1}{3.14159265358979}{0}%
}%
\let\pgfmathfloatpi=\pgfmathfloatpi@

\def\pgfmathfloate@{%
    \pgfmathfloatcreate{1}{2.71828182845905}{0}%
}%
\let\pgfmathfloate=\pgfmathfloate@

% Converts #1 from radians to degrees.
\def\pgfmathfloatdeg@#1{%
    \expandafter\ifx\csname pgfmfltdeg@factor\endcsname\relax
        % Lazy evaluation:
        \pgfmathfloatcreate{1}{5.72957795130823}{1}%
        \global\let\pgfmfltdeg@factor=\pgfmathresult
    \fi
    \pgfmathfloatmultiply@{#1}\pgfmfltdeg@factor%
}%
\let\pgfmathfloatdeg=\pgfmathfloatdeg@

% Converts #1 from degree to radians.
\def\pgfmathfloatrad@#1{%
    \expandafter\ifx\csname pgfmfltrad@factor\endcsname\relax
        % Lazy evaluation:
        \pgfmathfloatcreate{1}{1.74532925199433}{-2}%
        \global\let\pgfmfltrad@factor=\pgfmathresult
    \fi
    \pgfmathfloatmultiply@{#1}\pgfmfltrad@factor%
}%
\let\pgfmathfloatrad=\pgfmathfloatrad@

% Computes #1(#2) where #1 is a trigonometric function, i.e.
% #1(#2) = #1( #2 + r*360 )
%
% #1 is a one-argument macro which assigns \pgfmathresult.
\def\pgfmathfloatTRIG@#1#2{%
    \if0\pgfmath@trig@format@choice
        % trig format=deg
        \expandafter\ifx\csname pgfmathfloatTRIG@NUM\endcsname\relax%
            % Lazy evaluation:
            \pgfmathfloatcreate{1}{3.6}{2}%
            \global\let\pgfmathfloatTRIG@NUM=\pgfmathresult
            \pgfmathfloatcreate{1}{2.77777777777778}{-3}%
            \global\let\pgfmathfloatTRIG@NUM@INV=\pgfmathresult
        \fi
        \pgfmathfloatmodknowsinverse@{#2}{\pgfmathfloatTRIG@NUM}{\pgfmathfloatTRIG@NUM@INV}%
    \else
        % trig format=rad
        \expandafter\ifx\csname pgfmathfloatTRIG@rad@NUM\endcsname\relax%
            % Lazy evaluation:
            \pgfmathfloatcreate{1}{6.28318530717959}{0}%
            \global\let\pgfmathfloatTRIG@rad@NUM=\pgfmathresult
            \pgfmathfloatcreate{1}{1.59154943091895}{-1}%
            \global\let\pgfmathfloatTRIG@rad@NUM@INV=\pgfmathresult
        \fi
        \pgfmathfloatmodknowsinverse@{#2}{\pgfmathfloatTRIG@rad@NUM}{\pgfmathfloatTRIG@rad@NUM@INV}%
    \fi
    \pgfmathfloattofixed@{\pgfmathresult}%
    \expandafter#1\expandafter{\pgfmathresult}%
    \pgfmathfloatparsenumber{\pgfmathresult}%
}%

\def\pgfmathfloatsin@#1{\pgfmathfloatTRIG@\pgfmath@basic@sin@{#1}}%
\let\pgfmathfloatsin=\pgfmathfloatsin@
\def\pgfmathfloatcos@#1{\pgfmathfloatTRIG@\pgfmath@basic@cos@{#1}}%
\let\pgfmathfloatcos=\pgfmathfloatcos@
\def\pgfmathfloattan@#1{%
    % compute sin(#1) / cos(#1)
    \begingroup
    \pgfmathfloatcos@{#1}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloatsin@{#1}%
    \expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloattan=\pgfmathfloattan@

\def\pgfmathfloatcot@#1{%
    % compute cos(#1) / sin(#1)
    \begingroup
    \pgfmathfloatsin@{#1}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloatcos@{#1}%
    \expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatcot=\pgfmathfloatcot@

\def\pgfmathfloatatan@#1{%
    \begingroup
    \expandafter\ifx\csname pgfmathfloatatan@TMP\endcsname\relax%
        \pgfmathfloatcreate{1}{1.6}{4}%
        \global\let\pgfmathfloatatan@TMP=\pgfmathresult
        \pgfmathfloatcreate{2}{1.6}{4}%
        \global\let\pgfmathfloatatan@TMPB=\pgfmathresult
    \fi
    \pgfmathfloatgreaterthan@{#1}{\pgfmathfloatatan@TMP}%
    \ifpgfmathfloatcomparison
        \pgfmathiftrigonometricusesdeg{%
            \pgfmathfloatcreate{1}{9.0}{1}%
        }{%
            \pgfmathfloatcreate{1}{1.570796326794}{0}%
        }%
    \else
        \pgfmathfloatlessthan{#1}{\pgfmathfloatatan@TMPB}%
        \ifpgfmathfloatcomparison
            \pgfmathiftrigonometricusesdeg{%
                \pgfmathfloatcreate{2}{9.0}{1}%
            }{%
                \pgfmathfloatcreate{2}{1.570796326794}{0}%
            }%
        \else
            \pgfmathfloattofixed@{#1}%
            \expandafter\pgfmath@basic@atan@\expandafter{\pgfmathresult}%
            \pgfmathfloatparsenumber{\pgfmathresult}%
        \fi
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\let\pgfmathfloatatan=\pgfmathfloatatan@

\def\pgfmathfloatatantwo#1#2{%
  % Note: first parameter is y (!), second is x (!)
  \begingroup%
    \let\pgfmath@trig@format@choice@@=\pgfmath@trig@format@choice
    \def\pgfmath@trig@format@choice{0}%
    %
    \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \expandafter\pgfmathfloat@decompose#2\relax\pgfmathfloat@b@S\pgfmathfloat@b@M\pgfmathfloat@b@E
    \ifnum\pgfmathfloat@a@S=0
        % ok, #1 = 0.  Substitute by 1e-16 such that the next \ifnum catches it:
        \pgfmathfloat@a@E=-16 %
    \fi
    %
    \ifnum\pgfmathfloat@a@E<-3 %
        \ifnum\pgfmathfloat@b@S=2 %
            % #2 < 0
            \pgfmathfloatcreate{1}{1.8}{2}% +180
        \else
            \ifnum\pgfmathfloat@b@S=1 %
                % #2 >0
                \pgfmathfloatcreate{0}{0.0}{0}%
            \else
                % + or - 90, just use the sign of #1:
                \pgfmathfloatcreate{\the\pgfmathfloat@a@S}{9.0}{1}%
            \fi
        \fi
    \else%
      \pgfmathfloatabs@{#1}\let\pgfmath@tempa\pgfmathresult%
      \pgfmathfloatabs@{#2}\let\pgfmath@tempb\pgfmathresult%
      \pgfmathfloatgreaterthan@{\pgfmath@tempa}{\pgfmath@tempb}%
      \ifpgfmathfloatcomparison
        \pgfmathfloatdivide@{#2}{\pgfmath@tempa}%
        \expandafter\pgfmathfloatatan@\expandafter{\pgfmathresult}%
        \let\pgfmath@tempa=\pgfmathresult
        \pgfmathfloatcreate{1}{9.0}{1}%
        \let\pgfmath@tempb=\pgfmathresult
        \pgfmathfloatsubtract@{\pgfmath@tempb}{\pgfmath@tempa}%
      \else%
        \pgfmathfloatdivide@{\pgfmath@tempa}{#2}%
        \expandafter\pgfmathfloatatan@\expandafter{\pgfmathresult}%
        \expandafter\pgfmathfloatifflags\expandafter{\pgfmathresult}{2}{%
            \let\pgfmath@tempa=\pgfmathresult
            \pgfmathfloatcreate{1}{1.8}{2}%
            \let\pgfmath@tempb=\pgfmathresult
            \pgfmathfloatadd@{\pgfmath@tempa}{\pgfmath@tempb}%
        }{}%
      \fi%
      %
      \pgfmathfloatifflags{#1}{-}{%
          %  #1 < 0:
        \pgfmathfloatmultiplyfixed@{\pgfmathresult}{-1}%
      }{}%
    \fi%
    \if1\pgfmath@trig@format@choice@@
        % trig format=rad
        \pgfmathfloat@scale@deg@to@rad\pgfmathresult
    \fi
    \pgfmath@smuggleone\pgfmathresult%
  \endgroup%
}%
\let\pgfmathfloatatantwo@=\pgfmathfloatatantwo
\expandafter\let\csname pgfmathfloatatan2\endcsname=\pgfmathfloatatantwo
\expandafter\let\csname pgfmathfloatatan2@\endcsname=\pgfmathfloatatantwo@

\def\pgfmathfloat@scale@deg@to@rad#1{%
    \edef\pgfmathfloat@loc@TMPb{#1}%
    \pgfmathfloatcreate{1}{1.74532925199433}{-2}% = pi / 180
    \pgfmathfloatmultiply@{\pgfmathresult}{\pgfmathfloat@loc@TMPb}%
}%

\def\pgfmathfloatsec@#1{\pgfmathfloatTRIG@\pgfmath@basic@cos@{#1}\pgfmathfloatreciprocal@{\pgfmathresult}}%
\let\pgfmathfloatsec=\pgfmathfloatsec@
\def\pgfmathfloatcosec@#1{\pgfmathfloatTRIG@\pgfmath@basic@sin@{#1}\pgfmathfloatreciprocal@{\pgfmathresult}}%
\let\pgfmathfloatcosec=\pgfmathfloatcosec@

% Expands #2 using \edef and invokes #1 with the resulting string.
%
% DEPRECATED
% Example:
%   \pgfmath@y=7.9pt
%   \pgfmathlog@invoke@expanded\pgfmathexp@{{\pgf@sys@tonumber{\pgfmath@y}}}%
% will invoke
%   \pgfmathexp@{7.9}
\def\pgfmathlog@invoke@expanded#1#2{%
    \edef\pgfmath@resulttemp{#2}%
    \expandafter#1\pgfmath@resulttemp
}%

\def\pgfmathfloatln@#1{%
    \pgfmathlog@float{#1}%
    \ifx\pgfmathresult\pgfutil@empty
        \pgfmathfloatcreate{3}{0.0}{0}%
    \else
        \pgfmathfloatparsenumber{\pgfmathresult}%
    \fi
}%
\let\pgfmathfloatln=\pgfmathfloatln@

\expandafter\def\csname pgfmathfloatlog10@\endcsname#1{%
    \pgfmathfloatln@{#1}%
    \let\pgfmathfloat@log@e=\pgfmathresult
    \pgfmathfloatcreate{1}{4.34294481903252}{-1}% 1/ln(10)
    \pgfmathfloatmultiply@{\pgfmathresult}{\pgfmathfloat@log@e}%
}%
\pgfutil@namelet{pgfmathfloatlog10}{pgfmathfloatlog10@}%

\expandafter\def\csname pgfmathfloatlog2@\endcsname#1{%
    \pgfmathfloatln@{#1}%
    \let\pgfmathfloat@log@e=\pgfmathresult
    \pgfmathfloatcreate{1}{1.44269504088896}{0}% 1/ln(2)
    \pgfmathfloatmultiply@{\pgfmathresult}{\pgfmathfloat@log@e}%
}%
\pgfutil@namelet{pgfmathfloatlog2}{pgfmathfloatlog2@}%

\expandafter\let\expandafter\pgfmathfloatlogtwo\csname pgfmathfloatlog2\endcsname
\expandafter\let\expandafter\pgfmathfloatlogtwo@\csname pgfmathfloatlog2@\endcsname
\expandafter\let\expandafter\pgfmathfloatlogten\csname pgfmathfloatlog10\endcsname
\expandafter\let\expandafter\pgfmathfloatlogten@\csname pgfmathfloatlog10@\endcsname

% Computes log(x) into \pgfmathresult.
%
% This allows numbers such at 10000000 or 5.23e-10 to be represented
% properly, although TeX-registers would produce overflow/underflow
% errors in these cases.
%
% The natural logarithm is computed using log(X*10^Y) = log(X) + log(10)*Y
%
% FIXME This routine is only kept for backwards compatibility!
% It does not work as expected because
% 1. it calls \pgfmathfloatparsenumber
% 2. it returns the result as fixed point number
% Use \pgfmathln@ instead!
\def\pgfmathlog@#1{%
    \pgfmathfloatparsenumber{#1}%
    \pgfmathlog@float{\pgfmathresult}%
}%
\let\pgfmathlog=\pgfmathlog@
\def\pgfmathlog@float#1{%
    \begingroup%
        % compute #1 = M*10^E with normalised mantissa M = [+-]*[1-9].XXXXX
        \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
        \ifnum\pgfmathfloat@a@S=1
            % Now, compute log(#1) = log(M) + E*log(10)
            \expandafter\pgfmath@basic@ln@\expandafter{\the\pgfmathfloat@a@Mtok}%
            \pgfmathfloat@b@M=\pgfmathresult pt%
            \pgfmathfloat@a@M=2.302585pt% = log(10)
            \multiply\pgfmathfloat@a@M by\pgfmathfloat@a@E\relax
            \advance\pgfmathfloat@b@M by\pgfmathfloat@a@M
            \edef\pgfmathresult{\pgf@sys@tonumber{\pgfmathfloat@b@M}}%
        \else
            \let\pgfmathresult=\pgfutil@empty%
        \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup%
}%


% Computes exp(#1) in floating point.
%
% The algorithm employs the identity
%  exp(x) = exp(x - log(10^k) + log(10^k)
%         = 10^k exp( x - k*log 10 )
% with k chosen such that exp( x - k*log10) can be computed with the
% basic level math engine.
%
% The precision (relative error) is between 10^{-4} and 10^{-6}. For
% #1 = 700, it is even 10^{-3}. I will need to improve that someday.
\def\pgfmathfloatexp@#1{%
    \begingroup
        \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
        \ifcase\pgfmathfloat@a@S
        % #1 = 0:
            \pgfmathfloatcreate{1}{1.0}{0}%
        \or% #1 > 0
            \pgfmathfloatexp@@{#1}%
        \or% #1 < 0
            \pgfmathfloatexp@@{#1}%
        \else
            \edef\pgfmathresult{#1}%
        \fi
        \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\def\pgfmathfloatexp@@#1{%
    % Employ the identity
    % exp(x) = exp(x - log(10^k) + log(10^k)) = 10^k exp( x - k *log(10))
    %
    % I'd like to have x - k*log(10) <= 1
    % => compute k := int( (x - 1) * 1/log(10) )
    % that should suffice since \pgfmathexp@ should be
    % accurate enough for those numbers.
    %
    % please note that we can do all this in TeX registers.
    % exp(700) is almost the maximum of double precision
    % anyway, and exp(16000) is certainly the largest we will
    % ever need.
    \pgfmathfloattofixed@{#1}%
    \pgf@xa=\pgfmathresult pt
    \pgf@xa=0.434294481\pgf@xa\relax
    \edef\pgfmathfloat@loc@TMPa{\pgf@sys@tonumber{\pgf@xa}}%
    \expandafter\pgfmathfloatexp@@toint\pgfmathfloat@loc@TMPa\relax
    \pgf@xa=2.302585092pt
    \multiply\pgf@xa by-\pgfmathfloat@k\relax
    \advance\pgf@xa by\pgfmathresult pt
    \edef\pgfmathfloat@loc@TMPa{\pgf@sys@tonumber{\pgf@xa}}%
%\message{computing exp(\pgfmathresult) = 10^\pgfmathfloat@k * exp(\pgfmathfloat@loc@TMPa)...}%
    \pgfmath@basic@exp@{\pgfmathfloat@loc@TMPa}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloatparsenumber{\pgfmathfloat@loc@TMPa}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathfloatshift@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@k}%
}%
% determine 'k'. This is a heuristics. The exponential series
% converges best for |x| <= 1. However, the fixed point arithmetics
% for tex results in best results for large |x|. Well, I'll need to
% tune this here.
\def\pgfmathfloatexp@@toint#1.#2\relax{%
    \c@pgf@counta=#1\relax
    \ifnum\c@pgf@counta<0
\advance\c@pgf@counta by-1 % FIXME . this is a test for optimizations.
        \c@pgf@countb=#2\relax
        \ifnum\c@pgf@countb>0
            \advance\c@pgf@counta by-1
        \fi
    \fi
    \edef\pgfmathfloat@k{\the\c@pgf@counta}%
}%
\let\pgfmathfloatexp=\pgfmathfloatexp@

\def\pgfmathfloatround@#1{%
    \begingroup
    \pgfkeysvalueof{/pgf/number format/precision/.@cmd}0\pgfeov
    \pgfmathfloattofixed{#1}%
    \pgfmathroundto{\pgfmathresult}%
    \pgfmathfloatparsenumber{\pgfmathresult}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%


\def\pgfmathfloatneg@#1{%
    \begingroup
    \expandafter\pgfmathfloat@decompose@tok#1\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \ifcase\pgfmathfloat@a@S\relax
        % 0:
        \edef\pgfmathresult{#1}%
    \or
        % +:
        \pgfmathfloatcreate{2}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \or
        % -:
        \pgfmathfloatcreate{1}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \or
        % nan:
        \edef\pgfmathresult{#1}%
    \or
        % +infty:
        \pgfmathfloatcreate{5}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \or
        % -infty:
        \pgfmathfloatcreate{4}{\the\pgfmathfloat@a@Mtok}{\the\pgfmathfloat@a@E}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%


\def\pgfmathfloatpow@#1#2{%
    \begingroup%
    \expandafter\pgfmathfloat@decompose@tok#2\relax\pgfmathfloat@a@S\pgfmathfloat@a@Mtok\pgfmathfloat@a@E
    \ifcase\pgfmathfloat@a@S\relax
        % #1 ^ 0 = 1
        \pgfmathfloatcreate{1}{1.0}{0}%
    \or
        % #2 > 0
        \pgfmathfloatpow@@{#1}{#2}%
    \or
        % #2 < 0
        \pgfmathfloatpow@@{#1}{#2}%
    \or
        % #2 = nan
        \edef\pgfmathresult{#2}%
    \or
        % #2 = inf
        \edef\pgfmathresult{#2}%
    \or
        % #2 = -inf
        \pgfmathfloatcreate{0}{0.0}{0}%
    \fi
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

% computes #1^#2
% PRECONDITIONS
% - #2 is positive.
\def\pgfmathfloatpow@@#1#2{%
    \pgfmathfloattofixed@{#2}%
    \afterassignment\pgfmath@x%
    \expandafter\c@pgfmath@counta\pgfmathresult pt\relax%
    \ifdim\pgfmath@x=0pt %
        % loop "manually"; we have an integer exponent!
        \ifnum\c@pgfmath@counta<0
            \pgfmathfloatreciprocal@{#1}%
            \let\pgfmathfloat@loc@TMPa=\pgfmathresult
            \c@pgfmath@counta=-\c@pgfmath@counta
        \else
            \edef\pgfmathfloat@loc@TMPa{#1}%
        \fi
        \pgfmathfloatcreate{1}{1.0}{0}%
        \let\pgfmathfloat@loc@TMPb=\pgfmathresult
        \pgfmathloop
            \ifnum\c@pgfmath@counta>0\relax%
                \ifodd\c@pgfmath@counta%
                    \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPb}{\pgfmathfloat@loc@TMPa}%
                    \let\pgfmathfloat@loc@TMPb=\pgfmathresult
                \fi
                \ifnum\c@pgfmath@counta>1\relax%
                    \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@loc@TMPa}%
                    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
                \fi%
                \divide\c@pgfmath@counta by2\relax%
        \repeatpgfmathloop%
    \else
        \pgfmathfloatgetflags{#1}\c@pgfmath@counta
        \ifnum0=\c@pgfmath@counta
            % ah: 0^x
            \pgfmathfloatgetflags{#2}\c@pgfmath@counta
            \ifnum0=\c@pgfmath@counta
                % ah: 0^0
                \pgfmathfloatcreate{1}{1.0}{0}%
            \else
                % ah: 0^x with x!=0:
                \pgfmathfloatcreate{0}{0.0}{0}%
            \fi
        \else
            % employ #1^#2 = exp( #2 * ln(#1) )
            \pgfmathfloatln@{#1}%
            \let\pgfmathfloat@loc@TMPa=\pgfmathresult
            \edef\pgfmathfloat@loc@TMPb{#2}%
            \pgfmathfloatmultiply@{\pgfmathfloat@loc@TMPa}{\pgfmathfloat@loc@TMPb}%
            \pgfmathfloatexp@{\pgfmathresult}%
        \fi
    \fi
}%

\def\pgfmathfloat@definemethodfrombasic@NOARG#1{%
    \pgfutil@ifundefined{pgfmath@basic@#1@}{%
        \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}%
    }{}%
    \edef\pgfmathfloat@glob@TMP{%
        \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname
        \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}%
    }%
    \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP%
    \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP%
}%
\def\pgfmathfloat@definemethodfrombasic@ONEARG#1{%
    \pgfutil@ifundefined{pgfmath@basic@#1@}{%
        \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}%
    }{}%
    \edef\pgfmathfloat@glob@TMP##1{%
        \noexpand\pgfmathfloattofixed{##1}%
        \noexpand\expandafter
        \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname\noexpand\expandafter%
            {\noexpand\pgfmathresult}%
        \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}%
    }%
    \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP%
    \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP%
}%
\def\pgfmathfloat@definemethodfrombasic@TWOARGS#1{%
    \pgfutil@ifundefined{pgfmath@basic@#1@}{%
        \pgfutil@namelet{pgfmath@basic@#1@}{pgfmath#1@}%
    }{}%
    \edef\pgfmathfloat@glob@TMP##1##2{%
        \noexpand\pgfmathfloattofixed{##2}%
        \noexpand\let\noexpand\pgfmathfloat@loc@TMPa=\noexpand\pgfmathresult
        \noexpand\pgfmathfloattofixed{##1}%
        \noexpand\expandafter
        \expandafter\noexpand\csname pgfmath@basic@#1@\endcsname\noexpand\expandafter%
            {\noexpand\pgfmathresult}{\noexpand\pgfmathfloat@loc@TMPa}%
        \noexpand\pgfmathfloatparsenumber{\noexpand\pgfmathresult}%
    }%
    \expandafter\let\csname pgfmathfloat#1@\endcsname=\pgfmathfloat@glob@TMP%
    \expandafter\let\csname pgfmathfloat#1\endcsname=\pgfmathfloat@glob@TMP%
}%
\pgfmathfloat@definemethodfrombasic@NOARG{rand}%
\pgfmathfloat@definemethodfrombasic@NOARG{rnd}%
\pgfmathfloat@definemethodfrombasic@NOARG{false}%
\pgfmathfloat@definemethodfrombasic@NOARG{true}%
% arcsin, arccos
\pgfmathfloat@definemethodfrombasic@ONEARG{asin}%
\pgfmathfloat@definemethodfrombasic@ONEARG{acos}%
\pgfmathfloat@definemethodfrombasic@ONEARG{not}%
\pgfmathfloat@definemethodfrombasic@ONEARG{hex}%
\pgfmathfloat@definemethodfrombasic@ONEARG{Hex}%
\pgfmathfloat@definemethodfrombasic@ONEARG{oct}%
\pgfmathfloat@definemethodfrombasic@ONEARG{bin}%
\pgfmathfloat@definemethodfrombasic@TWOARGS{and}%
\pgfmathfloat@definemethodfrombasic@TWOARGS{or}%

\pgfutil@ifundefined{pgfmathdeclarefunction}{%
    % special treatment: \pgfmathrand@ was not properly defined for pgf 2.00:
    \let\pgfmath@basic@rand=\pgfmathrand
    \let\pgfmath@basic@rand@=\pgfmathrand@
    \def\pgfmathfloatrand@{%
        \pgfmath@basic@rand
        \pgfmathfloatparsenumber{\pgfmathresult}%
    }%
    \let\pgfmathfloatrand=\pgfmathfloatrand@%
    %
    % special treatment: \pgfmathrnd@ was not properly defined for pgf 2.00:
    \let\pgfmath@basic@rnd=\pgfmathrnd
    \let\pgfmath@basic@rnd@=\pgfmathrnd@
    \def\pgfmathfloatrnd@{%
        \pgfmath@basic@rnd
        \pgfmathfloatparsenumber{\pgfmathresult}%
    }%
    \let\pgfmathfloatrnd=\pgfmathfloatrnd@%
}{}%

% Implements the factorial of '#1'.
% This does only work if '#1 < 2^32'.
\def\pgfmathfloatfactorial@#1{%
    \begingroup
    \pgfmathfloattofixed{#1}%
    % collect integer part into a 32 bit register:
    \afterassignment\pgfmath@gobbletilpgfmath@%
    \expandafter\c@pgfmath@counta\pgfmathresult\relax\pgfmath@%
    \pgfmathfloatcreate{1}{1.0}{0}%
    \let\pgfmathfloat@loc@TMPa=\pgfmathresult
    \pgfmathloop
    \ifnum\c@pgfmath@counta<2 %
    \else
        \expandafter\pgfmathfloatparsenumber\expandafter{\the\c@pgfmath@counta}%
        \expandafter\pgfmathfloatmultiply@\expandafter{\pgfmathresult}{\pgfmathfloat@loc@TMPa}%
        \let\pgfmathfloat@loc@TMPa=\pgfmathresult
        \advance\c@pgfmath@counta by-1\relax%
    \repeatpgfmathloop
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

% Implements the vector length of a 2D vector.
%
% ATTENTION: this does NOT use the improved code of the basic layer!
% It simply computed sqrt( #1^2 + #2^2 )!
\def\pgfmathfloatveclen@#1#2{%
    \begingroup
    \edef\pgfmathfloat@@a{#1}%
    \pgfmathfloatmultiply@{\pgfmathfloat@@a}{\pgfmathfloat@@a}%
    \let\pgfmathfloat@@a=\pgfmathresult
    %
    \edef\pgfmathfloat@@b{#2}%
    \pgfmathfloatmultiply@{\pgfmathfloat@@b}{\pgfmathfloat@@b}%
    \let\pgfmathfloat@@b=\pgfmathresult
    %
    \pgfmathfloatadd@{\pgfmathfloat@@a}{\pgfmathfloat@@b}%
    \pgfmathfloatsqrt@{\pgfmathresult}%
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%

\def\pgfmathfloatcosh@#1{%
    \begingroup
    \pgfmathfloatexp@{#1}%
    \let\pgfmathfloat@@a=\pgfmathresult
    %
    \pgfmathfloatneg@{#1}%
    \pgfmathfloatexp@{\pgfmathresult}%
    %
    \pgfmathfloatadd@{\pgfmathresult}{\pgfmathfloat@@a}%
    \expandafter\pgfmathfloatmultiplyfixed@\expandafter{\pgfmathresult}{0.5}%
    %
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\def\pgfmathfloatsinh@#1{%
    \begingroup
    \pgfmathfloatexp@{#1}%
    \let\pgfmathfloat@@a=\pgfmathresult
    %
    \pgfmathfloatneg@{#1}%
    \pgfmathfloatexp@{\pgfmathresult}%
    %
    \pgfmathfloatsubtract@{\pgfmathfloat@@a}{\pgfmathresult}%
    \expandafter\pgfmathfloatmultiplyfixed@\expandafter{\pgfmathresult}{0.5}%
    %
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\def\pgfmathfloattanh@#1{%
    \begingroup
    \pgfmathfloatsinh@{#1}%
    \let\pgfmathfloat@@a=\pgfmathresult
    %
    \pgfmathfloatcosh@{#1}%
    \let\pgfmathfloat@@b=\pgfmathresult
    %
    \pgfmathfloatdivide@{\pgfmathfloat@@a}{\pgfmathfloat@@b}%
    %
    \pgfmath@smuggleone\pgfmathresult
    \endgroup
}%
\endinput