Current File : //usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/luamath/pgf/luamath/parser.lua |
-- Copyright 2011 by Christophe Jorssen and Mark Wibrow
-- Copyright 2014 by Christian Feuersaenger
--
-- This file may be distributed and/or modified
--
-- 1. under the LaTeX Project Public License and/or
-- 2. under the GNU Public License.
--
-- See the file doc/generic/pgf/licenses/LICENSE for more details.
--
-- $Id$
--
-- usage:
--
-- pgfluamathparser = require("pgf.luamath.parser")
--
-- local result = pgfluamathparser.pgfmathparse("1+ 2*4^2")
--
-- This LUA class has a direct backend in \pgfuselibrary{luamath}, see the documentation of that TeX package.
local pgfluamathparser = pgfluamathparser or {}
pgfluamathfunctions = require("pgf.luamath.functions")
-- lpeg is always present in luatex
local lpeg = require("lpeg")
local S, P, R = lpeg.S, lpeg.P, lpeg.R
local C, Cc, Ct = lpeg.C, lpeg.Cc, lpeg.Ct
local Cf, Cg, Cs = lpeg.Cf, lpeg.Cg, lpeg.Cs
local V = lpeg.V
local match = lpeg.match
local space_pattern = S(" \n\r\t")^0
local tex_unit =
P('pt') + P('mm') + P('cm') + P('in') +
-- while valid units, the font-depending ones need special attention... move them to the TeX side. For now.
-- P('ex') + P('em') +
P('bp') + P('pc') +
P('dd') + P('cc') + P('sp');
local one_digit_pattern = R("09")
local positive_integer_pattern = one_digit_pattern^1
-- FIXME : it might be a better idea to remove '-' from all number_patterns! Instead, rely on the prefix operator 'neg' to implement negative numbers.
-- Is that wise? It is certainly less efficient...
local integer_pattern = S("+-")^-1 * positive_integer_pattern
-- Valid positive decimals are |xxx.xxx|, |.xxx| and |xxx.|
local positive_integer_or_decimal_pattern = positive_integer_pattern * ( P(".") * one_digit_pattern^0)^-1 +
(P(".") * one_digit_pattern^1)
local integer_or_decimal_pattern = S("+-")^-1 * positive_integer_or_decimal_pattern
local fpu_pattern = R"05" * P"Y" * positive_integer_or_decimal_pattern * P"e" * S("+-")^-1 * R("09")^1 * P"]"
local unbounded_pattern = P"inf" + P"INF" + P"nan" + P"NaN" + P"Inf"
local number_pattern = C(unbounded_pattern + fpu_pattern + integer_or_decimal_pattern * (S"eE" * integer_pattern + C(tex_unit))^-1)
local underscore_pattern = P("_")
local letter_pattern = R("az","AZ")
local alphanum__pattern = letter_pattern + one_digit_pattern + underscore_pattern
local identifier_pattern = letter_pattern^1 * alphanum__pattern^0
local openparen_pattern = P("(") * space_pattern
local closeparen_pattern = P(")")
local opencurlybrace_pattern = P("{")
local closecurlybrace_pattern = P("}")
local openbrace_pattern = P("[")
local closebrace_pattern = P("]")
-- hm. what about '\\' or '\%' ?
-- accept \pgf@x, \count0, \dimen42, \c@pgf@counta, \wd0, \ht0, \dp 0
local controlsequence_pattern = P"\\" * C( (R("az","AZ") + P"@")^1) * space_pattern* C( R"09"^0 )
-- local string = P('"') * C((1 - P('"'))^0) * P('"')
local comma_pattern = P(",") * space_pattern
----------------
local TermOp = C(S("+-")) * space_pattern
local EqualityOp = C( P"==" + P"!=" ) * space_pattern
local RelationalOp = C( P"<=" + P">=" + P"<" + P">" ) * space_pattern
local FactorOp = C(S("*/")) * space_pattern
-- Grammar
local Exp, Term, Factor = V"Exp", V"Term", V"Factor"
local Prefix = V"Prefix"
local Postfix = V"Postfix"
local function eval (v1, op, v2)
if (op == "+") then return v1 + v2
elseif (op == "-") then return v1 - v2
elseif (op == "*") then return v1 * v2
elseif (op == "/") then return v1 / v2
else
error("This function must not be invoked for operator "..op)
end
end
local pgfStringToFunctionMap = pgfluamathfunctions.stringToFunctionMap
local function function_eval(name, ... )
local f = pgfStringToFunctionMap[name]
if not f then
error("Function '" .. name .. "' is undefined (did not find pgfluamathfunctions."..name .." (looked into pgfluamathfunctions.stringToFunctionMap))")
end
-- FIXME: validate signature
return f(...)
end
local func =
(C(identifier_pattern) * space_pattern * openparen_pattern * Exp * (comma_pattern * Exp)^0 * closeparen_pattern) / function_eval;
local functionWithoutArg = identifier_pattern / function_eval
-- this is what can occur as exponent after '^'.
-- I have the impression that the priorities could be implemented in a better way than this... but it seems to work.
local pow_exponent =
-- allows 2^-4, 2^1e4, 2^2
-- FIXME : why not 2^1e2 ?
Cg(C(integer_or_decimal_pattern)
-- 2^pi, 2^multiply(2,2)
+ Cg(func+functionWithoutArg)
-- 2^(2+2)
+ openparen_pattern * Exp * closeparen_pattern )
local function prefix_eval(op, x)
if op == "-" then
return pgfluamathfunctions.neg(x)
elseif op == "!" then
return pgfluamathfunctions.notPGF(x)
else
error("This function must not be invoked for operator "..op)
end
end
local prefix_operator = C( S"-!" )
local prefix_operator_pattern = (prefix_operator * space_pattern * Cg(Prefix) ) / prefix_eval
-- apparently, we need to distinguish between <expr> ! and <expr> != <expr2>:
local postfix_operator = C( S"r!" - P"!=" ) + C(P"^") * space_pattern * pow_exponent
pgfluamathfunctions.functionMustBeEvaluatedInTeX = function()
error("The function in this context cannot be evaluated by LUA because it depends on TeX macros.")
end
local ternary_eval = pgfluamathfunctions.ifthenelse
local factorial_eval = pgfluamathfunctions.factorial
local deg = pgfluamathfunctions.deg
local pow_eval = pgfluamathfunctions.pow
-- @param prefix the argument before the postfix operator.
-- @param op either nil or the postfix operator
-- @param arg either nil or the (mandatory) argument for 'op'
local function postfix_eval(prefix, op, arg)
local result
if op == nil then
result = prefix
elseif op == "r" then
if arg then error("parser setup error: expected nil argument") end
result = deg(prefix)
elseif op == "!" then
if arg then error("parser setup error: expected nil argument") end
result = factorial_eval(prefix)
elseif op == "^" then
if not arg then error("parser setup error: ^ with its argument") end
result = pow_eval(prefix, arg)
else
error("Parser setup error: " .. tostring(op) .. " unexpected in this context")
end
return result
end
local function equality_eval(v1, op, v2)
local fct
if (op == "==") then fct = pgfluamathfunctions.equal
elseif (op == "!=") then fct = pgfluamathfunctions.notequal
else
error("This function must not be invoked for operator "..op)
end
return fct(v1,v2)
end
local function relational_eval(v1, op, v2)
local fct
if (op == "<") then fct = pgfluamathfunctions.less
elseif (op == ">") then fct = pgfluamathfunctions.greater
elseif (op == ">=") then fct = pgfluamathfunctions.notless
elseif (op == "<=") then fct = pgfluamathfunctions.notgreater
else
error("This function must not be invoked for operator "..op)
end
return fct(v1,v2)
end
-- @return either the box property or nil
-- @param cs "wd", "ht", or "dp"
-- @param intSuffix some integer
local function get_tex_box(cs, intSuffix)
-- assume get_tex_box is only called when a dimension is required.
local result
pgfluamathparser.units_declared = true
local box =tex.box[tonumber(intSuffix)]
if not box then error("There is no box " .. intSuffix) end
if cs == "wd" then
result = box.width / 65536
elseif cs == "ht" then
result = box.height / 65536
elseif cs == "dp" then
result = box.depth / 65536
else
result = nil
end
return result
end
local function controlsequence_eval(cs, intSuffix)
local result
if intSuffix and #intSuffix >0 then
if cs == "count" then
result= pgfluamathparser.get_tex_count(intSuffix)
elseif cs == "dimen" then
result= pgfluamathparser.get_tex_dimen(intSuffix)
else
result = get_tex_box(cs,intSuffix)
if not result then
-- this can happen - we cannot expand \chardef'ed boxes here.
-- this will be done by the TeX part
error('I do not know/support the TeX register "\\' .. cs .. '"')
end
end
else
result = pgfluamathparser.get_tex_register(cs)
end
return result
end
pgfluamathparser.units_declared = false
function pgfluamathparser.get_tex_register(register)
-- register is a string which could be a count or a dimen.
if pcall(tex.getcount, register) then
return tex.count[register]
elseif pcall(tex.getdimen, register) then
pgfluamathparser.units_declared = true
return tex.dimen[register] / 65536 -- return in points.
else
error('I do not know the TeX register "' .. register .. '"')
return nil
end
end
function pgfluamathparser.get_tex_count(count)
-- count is expected to be a number
return tex.count[tonumber(count)]
end
function pgfluamathparser.get_tex_dimen(dimen)
-- dimen is expected to be a number
pgfluamathparser.units_declared = true
return tex.dimen[tonumber(dimen)] / 65536
end
function pgfluamathparser.get_tex_sp(dimension)
-- dimension should be a string
pgfluamathparser.units_declared = true
return tex.sp(dimension) / 65536
end
local initialRule = V"initial"
local Summand = V"Summand"
local Relational = V"Relational"
local Equality = V"Equality"
local LogicalOr = V"LogicalOr"
local LogicalAnd = V"LogicalAnd"
local pgftonumber = pgfluamathfunctions.tonumber
local tonumber_withunit = pgfluamathparser.get_tex_sp
local function number_optional_units_eval(x, unit)
if not unit then
return pgftonumber(x)
else
return tonumber_withunit(x)
end
end
-- @param scale the number.
-- @param controlsequence either nil in which case just the number must be returned or a control sequence
-- @see controlsequence_eval
local function scaled_controlsequence_eval(scale, controlsequence, intSuffix)
if controlsequence==nil then
return scale
else
return scale * controlsequence_eval(controlsequence, intSuffix)
end
end
-- Grammar
--
-- for me:
-- - use '/' to evaluate all expressions which contain a _constant_ number of captures.
-- - use Cf to evaluate expressions which contain a _dynamic_ number of captures
--
-- see unittest_luamathparser.tex for tons of examples
local G = P{ "initialRule",
initialRule = space_pattern* Exp * -1;
-- ternary operator (or chained ternary operators):
-- FIXME : is this chaining a good idea!?
Exp = Cf( LogicalOr * Cg(P"?" * space_pattern * LogicalOr * P":" *space_pattern * LogicalOr )^0, ternary_eval) ;
LogicalOr = Cf(LogicalAnd * (P"||" * space_pattern * LogicalAnd)^0, pgfluamathfunctions.orPGF);
LogicalAnd = Cf(Equality * (P"&&" * space_pattern * Equality)^0, pgfluamathfunctions.andPGF);
Equality = Cf(Relational * Cg(EqualityOp * Relational)^0, equality_eval);
Relational = Cf(Summand * Cg(RelationalOp * Summand)^0, relational_eval);
Summand = Cf(Term * Cg(TermOp * Term)^0, eval) ;
Term = Cf(Prefix * Cg(FactorOp * Prefix)^0, eval);
Prefix = prefix_operator_pattern + Postfix;
-- this calls 'postfix_eval' with nil arguments if it is no postfix operation.. but that does not hurt (right?)
Postfix = Factor * (postfix_operator * space_pattern)^-1 / postfix_eval;
Factor =
(
number_pattern / number_optional_units_eval *
-- this construction will evaluate number_pattern with 'number_optional_units_eval' FIRST.
-- also accept '0.5 \pgf@x' here:
space_pattern *controlsequence_pattern^-1 / scaled_controlsequence_eval
+ func
+ functionWithoutArg
+ openparen_pattern * Exp * closeparen_pattern
+ controlsequence_pattern / controlsequence_eval
) *space_pattern
;
}
-- does not reset units_declared.
local function pgfmathparseinternal(str)
local result = match(G,str)
if result == nil then
error("The string '" .. str .. "' is no valid PGF math expression. Please check for syntax errors.")
end
return result
end
-- This is the math parser function in this module.
--
-- @param str a string like "1+1" which is accepted by the PGF math language
-- @return the result of the expression.
--
-- Throws an error if the string is no valid expression.
function pgfluamathparser.pgfmathparse(str)
pgfluamathparser.units_declared = false
return pgfmathparseinternal(str)
end
local pgfmathparse = pgfluamathparser.pgfmathparse
local tostringfixed = pgfluamathfunctions.tostringfixed
local tostringfpu = pgfluamathfunctions.toTeXstring
local tmpFunctionArgumentPrefix = "tmpVar"
local stackOfLocalFunctions = {}
-- This is a backend for PGF's 'declare function'.
-- \tikzset{declare function={mu(\x,\i)=\x^\i;}}
-- will boil down to
-- pgfluamathparser.declareExpressionFunction("mu", 2, "#1^#2")
--
-- The local function will be pushed on a stack of known local functions and is
-- available until popLocalExpressionFunction() is called. TeX will call this using
-- \aftergroup.
--
-- @param name the name of the new function
-- @param numArgs the number of arguments
-- @param expression an expression containing #1, ... #n where n is numArgs
--
-- ATTENTION: local functions behave DIFFERENTLY in LUA!
-- In LUA, local variables are not expanded whereas TeX expands them.
-- The difference is
--
-- declare function={mu1(\x,\i)=\x^\i;}
-- \pgfmathparse{mu1(-5,2)} --> -25
-- \pgfluamathparse{mu1(-5,2)} --> 25
--
-- x = -5
-- \pgfmathparse{mu1(x,2)} --> 25
-- \pgfluamathparse{mu1(x,2)} --> 25
--
-- In an early prototype, I simulated TeX's expansion to fix the first case (successfully).
-- BUT: that "simulated expansion" broke the second case because LUA will evaluate "x" and hand -5 to the local function.
-- I decided to keep it as is. Perhaps we should fix PGF's expansion approach in TeX (which is ugly anyway)
function pgfluamathparser.pushLocalExpressionFunction(name, numArgs, expression)
-- now we have "tmpVar1^tmpVar2" instead of "#1^#2"
local normalizedExpr = expression:gsub("#", tmpFunctionArgumentPrefix)
local restores = {}
local tmpVars = {}
for i=1,numArgs do
local tmpVar = tmpFunctionArgumentPrefix .. tostring(i)
tmpVars[i] = tmpVar
end
local newFunction = function(...)
local args = table.pack(...)
-- define "tmpVar1" ... "tmpVarN" to return args[i].
-- Of course, we need to restore "tmpVar<i>" after we return!
for i=1,numArgs do
local tmpVar = tmpVars[i]
local value = args[i]
restores[i] = pgfStringToFunctionMap[tmpVar]
pgfStringToFunctionMap[tmpVar] = function () return value end
end
-- parse our expression.
-- FIXME : this here is an attempt to mess around with "units_declared".
-- It would be better to call pgfmathparse and introduce some
-- semaphore to check if pgfmathparse is a nested call-- in this case, it should
-- not reset units_declared. But there is no "finally" block and pcall is crap (looses stack trace).
local success,result = pcall(pgfmathparseinternal, normalizedExpr)
-- remove 'tmpVar1', ... from the function table:
for i=1,numArgs do
local tmpVar = tmpVars[i]
pgfStringToFunctionMap[tmpVar] = restores[i]
end
if success==false then error(result) end
return result
end
table.insert(stackOfLocalFunctions, name)
pgfStringToFunctionMap[name] = newFunction
end
function pgfluamathparser.popLocalExpressionFunction()
local name = stackOfLocalFunctions[#stackOfLocalFunctions]
pgfStringToFunctionMap[name] = nil
-- this removes the last element:
table.remove(stackOfLocalFunctions)
end
-- A Utility function which simplifies the interaction with the TeX code
-- @param expression the input expression (string)
-- @param outputFormatChoice 0 if the result should be a fixed point number, 1 if it should be in FPU format
-- @param showErrorMessage (boolean) true if any error should be displayed, false if errors should simply result in an invocation of TeX's parser (the default)
--
-- it defines \pgfmathresult and \ifpgfmathunitsdeclared
function pgfluamathparser.texCallParser(expression, outputFormatChoice, showErrorMessage)
local success, result
if showErrorMessage then
result = pgfmathparse(expression)
success = true
else
success, result = pcall(pgfmathparse, expression)
end
if success and result then
local result_str
if outputFormatChoice == 0 then
-- luamath/output format=fixed
result_str = tostringfixed(result)
else
-- luamath/output format=fixed
result_str = tostringfpu(result)
end
tex.sprint("\\def\\pgfmathresult{" .. result_str .. "}")
if pgfluamathparser.units_declared then
tex.sprint("\\pgfmathunitsdeclaredtrue")
else
tex.sprint("\\pgfmathunitsdeclaredfalse")
end
else
tex.sprint("\\def\\pgfmathresult{}")
tex.sprint("\\pgfmathunitsdeclaredfalse")
end
end
return pgfluamathparser