Current File : //usr/share/texlive/texmf-dist/tex/generic/pgf/graphdrawing/lua/pgf/gd/layered.lua |
-- Copyright 2012 by Till Tantau
--
-- This file may be distributed an/or modified
--
-- 1. under the LaTeX Project Public License and/or
-- 2. under the GNU Public License
--
-- See the file doc/generic/pgf/licenses/LICENSE for more information
--- @release $Header$
local layered = {}
-- Namespace
require("pgf.gd").layered = layered
local lib = require "pgf.gd.lib"
local Storage = require "pgf.gd.lib.Storage"
--
-- This file defines some basic functions to compute and/or set the
-- ideal distances between nodes of any kind of layered drawing of a
-- graph.
---
-- Compute the ideal distance between two siblings
--
-- @param paddings A |Storage| object in which the computed distances
-- (paddings) are stored.
-- @param graph The graph object
-- @param n1 The first node
-- @param n2 The second node
function layered.ideal_sibling_distance (paddings, graph, n1, n2)
local ideal_distance
local sep
local n1_is_node = n1.kind == "node"
local n2_is_node = n2.kind == "node"
if not n1_is_node and not n2_is_node then
ideal_distance = graph.options['sibling distance']
sep = graph.options['sibling post sep']
+ graph.options['sibling pre sep']
else
if n1_is_node then
ideal_distance = lib.lookup_option('sibling distance', n1, graph)
else
ideal_distance = lib.lookup_option('sibling distance', n2, graph)
end
sep = (n1_is_node and lib.lookup_option('sibling post sep', n1, graph) or 0)
+ (n2_is_node and lib.lookup_option('sibling pre sep', n2, graph) or 0)
end
return math.max(ideal_distance, sep +
((n1_is_node and paddings[n1].sibling_post) or 0) -
((n2_is_node and paddings[n2].sibling_pre) or 0))
end
---
-- Compute the baseline distance between two layers
--
-- The "baseline" distance is the distance between two layers that
-- corresponds to the distance of the two layers if the nodes where
-- "words" on two adjacent lines. In this case, the distance is
-- normally the layer_distance, but will be increased such that if we
-- draw a horizontal line below the deepest character on the first
-- line and a horizontal line above the highest character on the
-- second line, the lines will have a minimum distance of layer sep.
--
-- Since each node on the lines might have a different layer sep and
-- layer distance specified, the maximum over all the values is taken.
--
-- @param paddings A |Storage| object in which the distances
-- (paddings) are stored.
-- @param graph The graph in which the nodes reside
-- @param l1 An array of the nodes of the first layer
-- @param l2 An array of the nodes of the second layer
function layered.baseline_distance (paddings, graph, l1, l2)
if #l1 == 0 or #l2 == 0 then
return 0
end
local layer_distance = -math.huge
local layer_pre_sep = -math.huge
local layer_post_sep = -math.huge
local max_post = -math.huge
local min_pre = math.huge
for _,n in ipairs(l1) do
layer_distance = math.max(layer_distance, lib.lookup_option('level distance', n, graph))
layer_post_sep = math.max(layer_post_sep, lib.lookup_option('level post sep', n, graph))
if n.kind == "node" then
max_post = math.max(max_post, paddings[n].layer_post)
end
end
for _,n in ipairs(l2) do
layer_pre_sep = math.max(layer_pre_sep, lib.lookup_option('level pre sep', n, graph))
if n.kind == "node" then
min_pre = math.min(min_pre, paddings[n].layer_pre)
end
end
return math.max(layer_distance, layer_post_sep + layer_pre_sep + max_post - min_pre)
end
---
-- Position nodes in layers using baselines
--
-- @param layers A |Storage| object assigning layers to vertices.
-- @param paddings A |Storage| object storing the computed distances
-- (paddings).
-- @param graph The graph in which the nodes reside
function layered.arrange_layers_by_baselines (layers, paddings, graph)
local layer_vertices = Storage.newTableStorage()
-- Decompose into layers:
for _,v in ipairs(graph.vertices) do
table.insert(layer_vertices[layers[v]], v)
end
if #layer_vertices > 0 then -- sanity check
-- Now compute ideal distances and store
local height = 0
for _,v in ipairs(layer_vertices[1]) do
v.pos.y = 0
end
for i=2,#layer_vertices do
height = height + layered.baseline_distance(paddings, graph, layer_vertices[i-1], layer_vertices[i])
for _,v in ipairs(layer_vertices[i]) do
v.pos.y = height
end
end
end
end
-- Done
return layered