Current File : //usr/share/texlive/texmf-dist/doc/pdftex/samplepdftex/supp-pdf.tex |
%D \module
%D [ file=supp-pdf,
%D version=2004.12.16,
%D title=\CONTEXT\ Support Macros,
%D subtitle=\METAPOST\ to \PDF\ conversion,
%D author=Hans Hagen \& others (see text),
%D date=\currentdate,
%D copyright=\PRAGMA]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
%D These macros are written as generic as possible. Some
%D general support macro's are loaded from a small module
%D especially made for non \CONTEXT\ use. In this module I
%D use a matrix transformation macro written by Tanmoy
%D Bhattacharya. Thanks to extensive testing by Sebastian
%D Ratz I was able to complete this module within reasonable
%D time. This module has support for \METAPOST\ extensions
%D built in.
%D
%D Daniel H. Luecking came up with a better (more precise)
%D transformation method. You can recognize his comment by
%D his initials. (We keep the old code around because it's a
%D nice illustration on how a module like this evolves.)
% Beware, we cannot use \zeropoint here since it may be
% defined in the range \dimen 0 - 20 which we happen to use
% as scratch registers; inside context we may consider
% using dedicated registers.
% fails: ( ) vect10 9.96265 fshow % \040\040\040\040
%
% some optimizations are possible, but we need to be generic
%D First we take care of non||\CONTEXT\ use (newlines needed,
%D expandafter not -).
\ifx \undefined \writestatus \input supp-mis.tex \relax \fi
\ifx \undefined \convertMPtoPDF \else \expandafter \endinput \fi
\ifx \undefined \StartLatexHack \else \StartLatexHack \fi
%D This module handles some \PDF\ conversion and insertions
%D topics. By default, the macros use the \PDFTEX\ primitive
%D \type{\pdfliteral} when available. Since \PDFTEX\ is now the
%D default engine for \TEX\ distributions, we need a more complex
%D test.
\writestatus{loading}{Context Support Macros / PDF (2004.03.26)}
\unprotect
\ifx\PDFcode\undefined
\ifx\pdfliteral\undefined
\def\PDFcode#1{\special{PDF: #1}}
\else\ifx\pdfoutput\undefined
\def\PDFcode#1{\special{PDF: #1}}
\else\ifcase\pdfoutput
\def\PDFcode#1{\special{PDF: #1}}
\else % pdftex as well as in pdf mode
\let\PDFcode\pdfliteral
\fi\fi\fi
\else
% we probably use context
\fi
%D First we define a handy constant:
\bgroup \catcode`\%=\@@other \xdef\letterpercent{\string%} \egroup
%D \macros
%D {pdfimage,pdfimages,pdfclippedimage}
%D
%D Starting with pdftex version 14, images are included more
%D natural to the form embedding. This enables alternative
%D images to be embedded.
%D
%D \starttyping
%D \pdfimage <optional dimensions> {file}
%D \pdfimages <optional dimensions> {high res file} {low res file}
%D \stoptyping
%D
%D The first one replaces the pre||version||14 original,
%D while the latter provides alternative images.
%D
%D The next macro is dedicated to Maarten Gelderman, who
%D needed to paste prepared \PDF\ pages into conference
%D proceedings.
%D
%D \starttyping
%D \pdfclippedimage <optional dimensions> {file} {l} {r} {t} {b}
%D \stoptyping
% \ifx\pdftexversion\undefined % no \m!systems for the sake of latex
% \writestatus{systems}{Why not use pdf(e)TeX binaries?}
% \protect
% \expandafter\endinput
% \fi
\ifx\pdftexversion\undefined \else \ifnum\pdftexversion>13
\def\pdfimage#1#%
{\dopdfimage{#1}}
\def\dopdfimage#1#2%
{\immediate\pdfximage#1{#2}%
\pdfrefximage\pdflastximage}
\def\pdfimages#1#%
{\dopdfimages{#1}}
\def\dopdfimages#1#2#3%
{\immediate\pdfximage#1{#2}%
\immediate\pdfobj
{[ << /Image \the\pdflastximage\space0 R
/DefaultForPrinting true >> ]}%
\immediate\pdfximage#1
attr {/Alternates \the\pdflastobj\space0 R}{#3}%
\pdfrefximage\pdflastximage}
\def\pdfclippedimage#1#% specs {file}{left}{right}{top}{bottom}
{\dopdfclippedimage{#1}}
\def\dopdfclippedimage#1#2#3#4#5#6%
{\bgroup
\pdfximage#1{#2}%
\setbox\scratchbox\hbox
{\pdfrefximage\pdflastximage}%
\hsize\wd\scratchbox
\advance\hsize -#3
\advance\hsize -#4
\vsize\ht\scratchbox
\advance\vsize -#5
\advance\vsize -#6
\setbox\scratchbox\vbox to \vsize
{\vskip-#5\hbox to \hsize{\hskip-#3\box\scratchbox\hss}}%
\pdfxform\scratchbox
\pdfrefxform\pdflastxform
\egroup}
\fi \fi
%D If you want to save a few hash entries, you may prefer the
%D less readable alternatives, like:
%D
%D \starttyping
%D \def\pdfimage#1#% This one is less readable but needs no additional
%D {\bgroup % hash entry for the second stage macro.
%D \def\pdfimage##1%
%D {\immediate\pdfximage##1{#2}%
%D \pdfrefximage\pdflastximage\egroup}}
%D \stoptyping
%D For old times sake we provide a few aliases. These will be
%D removed some day.
\ifx\pdftexversion\undefined \else \ifnum\pdftexversion>13
\let\pdfform =\pdfxform
\let\pdflastform=\pdflastxform
\let\pdfrefform =\pdfrefxform
\fi \fi
%D \macros
%D {convertPDFtoPDF}
%D
%D \PDFTEX\ supports verbatim inclusion of \PDF\ code. The
%D following macro takes care of inserting externally defined
%D illustrations in \PDF\ format. According to a suggestion
%D Tanmoy Bhattacharya posted to the \PDFTEX\ mailing list, we
%D first skip lines until \type{stream} is reached and then
%D copy lines until \type{endstream} is encountered. This
%D scheme only works with vectorized graphics in which no
%D indirect references to objects are used. Bitmaps also don't
%D work. Interpreting their specifications is beyond the
%D current implementation.
%D
%D \starttyping
%D \convertPDFtoPDF
%D {filename}
%D {x scale} {y scale}
%D {x offset } {y offset}
%D {width} {height}
%D \stoptyping
%D
%D When the scales are set to~1, the last last four values
%D are the same as the bounding box, e.g.
%D
%D \starttyping
%D \convertPDFtoPDF{mp-pra-1.pdf} {1} {1}{-1bp}{-1bp}{398bp}{398bp}
%D \convertPDFtoPDF{mp-pra-1.pdf}{.5}{.5} {0bp} {0bp}{199bp}{199bp}
%D \stoptyping
%D
%D Keep in mind, that this kind of copying only works for
%D pure and valid pdf code (without fonts).
%D The scanning and copying is straightforward and quite fast.
%D To speed up things we use two constants.
\def\@@PDFstream@@ {stream}
\def\@@PDFendstream@@ {endstream}
%D \macros
%D {PDFmediaboxprefered}
%D
%D If needed, the macros can scan for the mediabox that
%D specifies the dimensions and offsets of the graphic. When
%D we say:
%D
%D \starttyping
%D \PDFmediaboxpreferedtrue
%D \stoptyping
%D
%D the mediabox present in the file superseded the user
%D specified, already scaled and calculated offset and
%D dimensions. Beware: the user supplied values are not the
%D bounding box ones!
%D This code has become obsolete.
% \newif\ifPDFmediaboxprefered
\def\setPDFboundingbox#1#2#3#4#5#6%
{\dimen0=#1\dimen0=#5\dimen0
\ScaledPointsToBigPoints{\number\dimen0}\PDFxoffset
\dimen0=#3\dimen0=#5\dimen0
\xdef\PDFwidth{\the\dimen0}%
\dimen0=#2\dimen0=#6\dimen0
\ScaledPointsToBigPoints{\number\dimen0}\PDFyoffset
\dimen0=#4\dimen0=#6\dimen0
\xdef\PDFheight{\the\dimen0}%
\global\let\PDFxoffset\PDFxoffset
\global\let\PDFyoffset\PDFyoffset}
\def\setPDFmediabox#1[#2 #3 #4 #5]#6\done
{\dimen2=#2bp\dimen2=-\dimen2 % \dimen2=-#2bp also works since tex handles --
\dimen4=#3bp\dimen4=-\dimen4 % \dimen4=-#3bp also works since tex handles --
\dimen6=#4bp\advance\dimen6 \dimen2
\dimen8=#5bp\advance\dimen8 \dimen4
\setPDFboundingbox{\dimen2}{\dimen4}{\dimen6}{\dimen8}\PDFxscale\PDFyscale}
% \def\checkPDFmediabox#1/MediaBox#2#3\done
% {\ifx#2\relax \else
% \message{mediabox}%
% \setPDFmediabox#2#3\done
% \fi}
%D We use the general macro \type{\doprocessfile} and feed this
%D with a line handling macro that changes it's behavior when
%D the stream operators are encountered.
% \def\handlePDFline
% {\ifx\@@PDFstream@@\fileline
% \let\doprocessPDFline\copyPDFobject
% \startPDFtoPDF
% \else\ifPDFmediaboxprefered
% \expandafter\checkPDFmediabox\fileline/MediaBox\relax\done
% \fi\fi}
% \def\copyPDFobject
% {\ifx\@@PDFendstream@@\fileline
% \ifPDFmediaboxprefered
% \let\doprocessPDFline\findPDFmediabox
% \else
% \let\doprocessPDFline\relax
% \fi
% \else
% \advance\scratchcounter 1
% \PDFcode{\fileline}%
% \fi}
% \def\findPDFmediabox
% {\expandafter\checkPDFmediabox\fileline/MediaBox\relax\done}
%D The main conversion macro wraps the \PDF\ codes in a box
%D that is output as an object. The graphics are embedded
%D in~\type{q} and~\type{Q} and are scaled and positioned using
%D one transform call (\type{cm}). This saves some additional
%D scaling.
%D \starttyping
%D \def\startPDFtoPDF%
%D {\setbox0=\vbox\bgroup
%D \message{[PDF to PDF \PDFfilename}%
%D \forgetall
%D \scratchcounter=0
%D \let\stopPDFtoPDF=\dostopPDFtoPDF}
%D
%D \def\dostopPDFtoPDF%
%D {\ifnum\scratchcounter<0 \scratchcounter=1 \fi
%D \message{(\the\scratchcounter\space lines)]}%
%D \egroup
%D \wd0=\PDFwidth
%D \vbox to \PDFheight
%D {\forgetall
%D \vfill
%D \PDFcode{q}%
%D \PDFcode{1 0 0 1 \PDFxoffset\space \PDFyoffset\space cm}%
%D \PDFcode{\PDFxscale\space 0 0 \PDFyscale\space 0 0 cm}%
%D \box0
%D \PDFcode{Q}}}
%D
%D \def\stopPDFtoPDF%
%D {\message{[PDF to PDF \PDFfilename\space not found]}}
%D
%D \def\convertPDFtoPDF#1#2#3#4#5#6#7%
%D {\bgroup
%D \def\PDFfilename{#1}%
%D \def\PDFxscale {#2}%
%D \def\PDFyscale {#3}%
%D \setPDFboundingbox{#4}{#5}{#6}{#7}{1}{1}%
%D \uncatcodespecials
%D \endlinechar=-1
%D \let\doprocessPDFline=\handlePDFline
%D \doprocessfile\scratchread\PDFfilename\doprocessPDFline
%D \stopPDFtoPDF
%D \egroup}
\def\convertPDFtoPDF#1#2#3#4#5#6#7%
{\message{[PDF to PDF use \string\PDFcode instead]}%
\vbox{use the direct method instead}}
%D \macros
%D {dogetPDFmediabox}
%D
%D The next macro can be used to find the mediabox of a \PDF\
%D illustration.
%D
%D \starttyping
%D \dogetPDFmediabox
%D {filename}
%D {new dimen}{new dimen}{new dimen}{new dimen}
%D \stoptyping
%D
%D Beware of dimen clashes: this macro uses the 5~default
%D scratch registers! When no file or mediabox is found, the
%D dimensions are zeroed.
\def\dogetPDFmediabox#1#2#3#4#5%
{\bgroup
\def\PDFxscale{1}%
\def\PDFyscale{1}%
\uncatcodespecials
\endlinechar\minusone
\def\checkPDFtypepage##1/Type /Page##2##3\done%
{\ifx##2\relax
\else\if##2s% accept /Page and /Pages
\let\doprocessPDFline\findPDFmediabox
\else
\let\doprocessPDFline\findPDFmediabox
\fi\fi}%
\def\findPDFtypepage
{\expandafter\checkPDFtypepage\fileline/Type /Page\relax\done}%
\def\checkPDFmediabox##1/MediaBox##2##3\done%
{\ifx##2\relax \else
\setPDFmediabox##2##3\done
\fileprocessedtrue
\fi}%
\def\findPDFmediabox
{\expandafter\checkPDFmediabox\fileline/MediaBox\relax\done}%
\let\doprocessPDFline\findPDFtypepage
\doprocessfile\scratchread{#1}\doprocessPDFline
\egroup
\ifx\PDFxoffset\undefined
#2\zeropoint
#3\zeropoint
#4\zeropoint
#5\zeropoint
\else
#2=\PDFxoffset\onebasepoint
#3=\PDFyoffset\onebasepoint
#4=\PDFwidth
#5=\PDFheight
\fi}
%D \macros
%D {convertMPtoPDF}
%D
%D The next set of macros implements \METAPOST\ to \PDF\
%D conversion. Because we want to test as fast as possible, we
%D first define the \POSTSCRIPT\ operators that \METAPOST\
%D uses. We don't define irrelevant ones, because these are
%D skipped anyway.
%D The converter can be made a bit faster by replacing the
%D two test macros (the ones with the many \type {\if's}) by
%D a call to named branch macros (something \typ {\getvalue
%D {xPSmoveto}}. For everyday documents with relatively
%D small graphics the gain in speed can be neglected.
\def \PScurveto {curveto}
\def \PSlineto {lineto}
\def \PSmoveto {moveto}
\def \PSshowpage {showpage}
\def \PSnewpath {newpath}
\def \PSfshow {fshow}
\def \PSclosepath {closepath}
\def \PSfill {fill}
\def \PSstroke {stroke}
\def \PSclip {clip}
\def \PSrlineto {rlineto}
\def \PSsetlinejoin {setlinejoin}
\def \PSsetlinecap {setlinecap}
\def \PSsetmiterlimit {setmiterlimit}
\def \PSsetgray {setgray}
\def \PSsetrgbcolor {setrgbcolor}
\def \PSsetcmykcolor {setcmykcolor}
\def \PSsetdash {setdash}
\def \PSgsave {gsave}
\def \PSgrestore {grestore}
\def \PStranslate {translate}
\def \PSscale {scale}
\def \PSconcat {concat}
\def \PSdtransform {dtransform}
\def \PSsetlinewidth {setlinewidth}
\def \PSpop {pop}
\def \PSnfont {nfont} % was needed for TUG98 proceedings
\def \PSspecial {special} % extensions to MetaPost
%D A previous version set \type {%} to ignore, which
%D simplified the following definitions. At the start of
%D conversion the percent character was made active again.
%D Because the whole graphic is one paragraph (there are no
%D empty lines) this does not give the desired effect. This
%D went unnoticed untill Scott Pakin sent me a test file
%D percent characters in a string. So, from now on we have
%D to prefix the following strings with percentages.
\edef \PSBoundingBox {\letterpercent\letterpercent BoundingBox:}
\edef \PSHiResBoundingBox {\letterpercent\letterpercent HiResBoundingBox:}
\edef \PSExactBoundingBox {\letterpercent\letterpercent ExactBoundingBox:}
\edef \PSMetaPostSpecial {\letterpercent\letterpercent MetaPostSpecial:}
\edef \PSMetaPostSpecials {\letterpercent\letterpercent MetaPostSpecials:}
\edef \PSPage {\letterpercent\letterpercent Page:}
%D By the way, the \type {setcmykcolor} operator is not
%D output by \METAPOST\ but can result from converting the
%D \cap{RGB} color specifications, as implemented in
%D \type{supp-mps}.
%D In \POSTSCRIPT\ arguments precede the operators. Due to the
%D fact that in some translations we need access to those
%D arguments, and also because sometimes we have to skip them,
%D we stack them up. The stack is one||dimensional for non path
%D operators and two||dimensional for operators inside a path.
%D This is because we have to save the whole path for
%D (optional) postprocessing. Values are pushed onto the stack
%D by:
%D
%D \starttyping
%D \setMPargument {value}
%D \stoptyping
%D
%D They can be retrieved by the short named macros:
%D
%D \starttyping
%D \gMPa {number}
%D \gMPs {number}
%D \stoptyping
%D
%D When scanning a path specification, we also save the
%D operator, using
%D
%D \starttyping
%D \setMPkeyword {n}
%D \stoptyping
%D
%D The path drawing operators are coded for speed: \type{clip},
%D \type{stroke}, \type{fill} and \type{fillstroke} become
%D 1, 2, 3 and~4.
%D
%D When processing the path this code can be retrieved
%D using
%D
%D \starttyping
%D \getMPkeyword % {n}
%D \stoptyping
%D
%D When setting an argument, the exact position on the stack
%D depends on the current value of the \COUNTERS\
%D \type{\nofMPsegments} and \type{\nofMParguments}.
\newcount\nofMPsegments
\newcount\nofMParguments
%D These variables hold the coordinates. The argument part of
%D the stack is reset by:
%D
%D \starttyping
%D \resetMPstack
%D \stoptyping
%D
%D We use the prefix \type{@@MP} to keep the stack from
%D conflicting with existing macros. To speed up things a bit
%D more, we use the constant \type{\@@MP}.
\def\@@MP{@@MP}
\def\setMPargument% #1%
{\advance\nofMParguments \plusone
\expandafter\def
\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname} % {#1}
\def\letMPargument
{\advance\nofMParguments \plusone
\expandafter\let
\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname}
\def\setMPsequence#1 %
{\advance\nofMParguments \plusone
\expandafter\def
\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname{#1}%
\handleMPsequence}
\def\gMPa#1%
{\csname\@@MP0\number#1\endcsname}
\def\gMPs#1%
{\csname\@@MP\the\nofMPsegments\number#1\endcsname}
\def\dogMPa#1%
{\@EAEAEA\do\csname\@@MP0\number#1\endcsname}
\def\setMPkeyword#1 %
{\expandafter\def\csname\@@MP\the\nofMPsegments0\endcsname{#1}%
\advance\nofMPsegments \plusone
\nofMParguments\zerocount}
\def\getMPkeyword% #1%
{\csname\@@MP\the\nofMPsegments0\endcsname} % {\csname\@@MP#10\endcsname}
%D When we reset the stack, we can assume that all further
%D comment is to be ignored and handled in strings.
%D By redefining the reset macro after the first call, we
%D save some run time. Only use this macro after all
%D comments are processed and use the simple alternative
%D when dealing with comments.
\def\doresetMPstack
{\nofMParguments\zerocount}
\def\resetMPstack
{\let\handleMPgraphic\handleMPendgraphic
\let\resetMPstack\doresetMPstack
\resetMPstack}
%D The arguments are saved with the preceding command
%D \type{\do}. By default this command expands to nothing, but
%D when we deal with strings it's used to strip off the
%D \type{(} and \type{)}.
%D
%D Strings are kind of tricky, because characters can be
%D passed verbatim \type{(hello)}, by octal number
%D \type{(\005)} or as command \type{(\()}. We therefore
%D cannot simply ignore \type{(} and \type{)}, the way we do
%D with \type{[} and \type{]}. Another complication is that
%D strings may contain characters that normally have a
%D special meaning in \TEX, like \type{$} and \type{{}}.
%D
%D A previous solution made \type{\} an active character and
%D let it look ahead for a number or characters. We had to
%D abandon this scheme because of the need for verbatim
%D support. The next solution involved some \CATCODE\
%D trickery but works well.
\def\octalMPcharacter#1#2#3%
{\char'#1#2#3\relax}
\bgroup
\catcode`\|=\@@comment
\catcode`\%=\@@active
\catcode`\[=\@@active
\catcode`\]=\@@active
\catcode`\{=\@@active
\catcode`\}=\@@active
\catcode`B=\@@begingroup
\catcode`E=\@@endgroup
\gdef\ignoreMPspecials|
B\let%\letterpercent|
\def[BE|
\def]BE|
\def{BE|
\def}BEE
\gdef\obeyMPspecials|
B\def%B\char 37\relax E|
\def[B\char 91\relax E|
\def]B\char 93\relax E|
\def{B\char123\relax E|
\def}B\char125\relax EE
\gdef\setMPspecials|
B\setnaturalcatcodes
\catcode`\\=\@@escape
\catcode`\%=\@@active
\catcode`\[=\@@active
\catcode`\]=\@@active
\catcode`\{=\@@active
\catcode`\}=\@@active
\lccode`\-=0 | latex sets this to `\-
\lccode`\%=`\% | otherwise it's seen as a number
\def\(B\char40\relax E|
\def\)B\char41\relax E|
\def\\B\char92\relax E|
\def\0B\octalMPcharacter0E|
\def\1B\octalMPcharacter1E|
\def\2B\octalMPcharacter2E|
\def\3B\octalMPcharacter3E|
\def\4B\octalMPcharacter4E|
\def\5B\octalMPcharacter5E|
\def\6B\octalMPcharacter6E|
\def\7B\octalMPcharacter7E|
\def\8B\octalMPcharacter8E|
\def\9B\octalMPcharacter9EE
\egroup
%D We use the comment symbol as a sort of trigger. Beware!
%D The whole graphic is seen as on eparagraph, which means
%D that we cannot change the catcodes in between.
\bgroup
\catcode`\%=\@@active
\gdef\startMPscanning{\let%=\startMPconversion}
\egroup
%D In earlier versions we used the sequence
%D
%D \starttyping
%D \expandafter\handleMPsequence\input filename\relax
%D \stoptyping
%D
%D Persistent problems in \LATEX\ however forced us to use a
%D different scheme. Every \POSTSCRIPT\ file starts with a
%D \type{%}, so we temporary make this an active character
%D that starts the scanning and redefines itself. (The problem
%D originates in the redefinition by \LATEX\ of the
%D \type{\input} primitive.)
\def\startMPconversion
{\ignoreMPspecials
\handleMPsequence}
%D Here comes the main loop. Most arguments are numbers. This
%D means that they can be recognized by their \type{\lccode}.
%D This method saves a lot of processing time. We could
%D speed up the conversion by handling the \type{path}
%D seperately.
\def\@EAEAEA{\expandafter\expandafter\expandafter} % to be sure
\def\dohandleMPsequence#1%
{\ifdone
\ifcase\lccode`#1\relax
\@EAEAEA\dohandleMPsequenceA
\else
\@EAEAEA\dohandleMPsequenceB
\fi
\else
\@EA\dohandleMPsequenceC
\fi#1}
%\def\dohandleMPsequenceA#1 %
% {\setMPargument{#1}%
% \handleMPsequence}
\let\dohandleMPsequenceA\setMPsequence
\def\dohandleMPsequenceB#1 %
{\edef\somestring{#1}%
\ifx\somestring\PSmoveto
\edef\lastMPmoveX{\gMPa1}%
\edef\lastMPmoveY{\gMPa2}%
\PDFcode{\!MPgMPa1 \!MPgMPa2 m}%
\resetMPstack
\else\ifx\somestring\PSnewpath
\let\handleMPsequence\handleMPpath
\else\ifx\somestring\PSgsave
\PDFcode{q}%
\resetMPstack
\else\ifx\somestring\PSgrestore
\PDFcode{Q}%
\resetMPstack
\else\ifx\somestring\PSdtransform % == setlinewidth
\let\handleMPsequence\handleMPdtransform
% after that we will encounter more tokens until setlinewidth+pop
% or pop+setlinewidth which we catch next; we explicitly need to
% reset the stack since [] n setdash may follow; a more clever
% approach would be to read on till the condition is met, but it's
% the only pop / setlinewidth we will encounter so ...
\else\ifx\somestring\PSsetlinewidth
% already handled in dtransform
\resetMPstack
\else\ifx\somestring\PSpop
% already handled in dtransform
\resetMPstack
\else\ifx\somestring\PSconcat
\PDFcode{\gMPa1 \gMPa2 \gMPa3 \gMPa4 \gMPa5 \gMPa6 cm}%
\resetMPstack
\else\ifx\somestring\PSsetrgbcolor
\handleMPrgbcolor
\resetMPstack
\else\ifx\somestring\PSsetcmykcolor
\handleMPcmykcolor
\resetMPstack
\else\ifx\somestring\PSsetgray
\handleMPgraycolor
\resetMPstack
\else\ifx\somestring\PStranslate
\PDFcode{1 0 0 1 \gMPa1 \gMPa2 cm}%
\resetMPstack
\else\ifx\somestring\PSsetdash
\handleMPsetdash
\resetMPstack
\else\ifx\somestring\PSsetlinejoin
\PDFcode{\gMPa1 j}%
\resetMPstack
\else\ifx\somestring\PSsetmiterlimit
\PDFcode{\gMPa1 M}%
\resetMPstack
\else\ifx\somestring\PSfshow
\PDFcode{n}%
\handleMPfshow
\resetMPstack
\else\ifx\somestring\PSsetlinecap
\PDFcode{\gMPa1 J}%
\resetMPstack
\else\ifx\somestring\PSrlineto
\PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}%
\resetMPstack
\else\ifx\somestring\PSscale
\PDFcode{\gMPa1 0 0 \gMPa2 0 0 cm}%
\resetMPstack
\else\ifx\somestring\PSspecial
\handleMPspecialcommand
\resetMPstack
\else
\handleMPgraphic% {#1}%
\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
\handleMPsequence}
\def\dohandleMPsequenceC#1 %
{\edef\somestring{#1}%
\handleMPgraphic % {#1}%
\handleMPsequence}
%D Since colors are not sensitive to transformations, they
%D are sometimes used for signaling. Therefore, we handle them
%D separately. The next macro can be redefined if needed.
\def\handleMPrgbcolor
{\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 rg
\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 RG}}
\def\handleMPcmykcolor
{\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 k
\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 K}}
\def\handleMPgraycolor
{\PDFcode{\!MPgMPa1 g
\!MPgMPa1 G}}
\def\handleMPspotcolor
{\PDFcode{0 g
0 G}}
%D Beginning and ending the graphics is taken care of by the
%D macro \type{\handleMPgraphic}, which is redefined when
%D the first graphics operator is met.
\def\handleMPendgraphic % #1%
{\ifx\somestring\PSshowpage
\let\handleMPsequence\finishMPgraphic
\else
\letMPargument\somestring % {#1}%
\fi}
\def\handleMPbegingraphic % #1%
{\ifx\somestring\PSBoundingBox
\def\handleMPsequence{\handleMPboundingbox1}%
\else\ifx\somestring\PSHiResBoundingBox
\def\handleMPsequence{\handleMPboundingbox2}%
\else\ifx\somestring\PSExactBoundingBox
\def\handleMPsequence{\handleMPboundingbox3}%
\else\ifx\somestring\PSshowpage
\let\handleMPsequence\finishMPgraphic
\else\ifx\somestring\PSPage
\let\handleMPsequence\handleMPpage
\else\ifx\somestring\PSMetaPostSpecials
\let\handleMPsequence\handleMPspecialscomment
\else\ifx\somestring\PSMetaPostSpecial
\let\handleMPsequence\handleMPspecialcomment
\else
\letMPargument\somestring % {#1}%
\fi\fi\fi\fi\fi\fi\fi}
\let\handleMPgraphic=\handleMPbegingraphic
%D We check for three kind of bounding boxes: the normal one
%D and two high precision ones:
%D
%D \starttyping
%D BoundingBox: llx lly ucx ucy
%D HiResBoundingBox: llx lly ucx ucy
%D ExactBoundingBox: llx lly ucx ucy
%D \stoptyping
%D
%D The original as well as the recalculated dimensions are
%D saved for later use.
\newif\ifskipemptyMPgraphic \skipemptyMPgraphicfalse
\chardef\currentMPboundingbox=0
\def\handleMPboundingbox#1#2 #3 #4 #5
{\ifnum#1>\currentMPboundingbox
\xdef\MPllx{#2}\xdef\MPlly{#3}%
\xdef\MPurx{#4}\xdef\MPury{#5}%
\dimen0=#2\onepoint
\dimen0=-\MPxscale\dimen0
\dimen2=#3\onepoint
\dimen2=-\MPyscale\dimen2
\xdef\MPxoffset{\withoutpt\the\dimen0}%
\xdef\MPyoffset{\withoutpt\the\dimen2}%
\dimen0=#2\onebasepoint
\dimen0=-\dimen0
\dimen2=#3\onebasepoint
\dimen2=-\dimen2
\advance\dimen0 #4\onebasepoint
\dimen0=\MPxscale\dimen0
\xdef\MPwidth{\the\dimen0}%
\advance\dimen2 #5\onebasepoint
\xdef\MPyshift{\the\dimen2}% unscaled
\dimen2=\MPyscale\dimen2
\xdef\MPheight{\the\dimen2}%
\chardef\currentMPboundingbox#1\relax
\fi
\doresetMPstack
\let\handleMPsequence\dohandleMPsequence
\let\next\handleMPsequence
\ifskipemptyMPgraphic
\ifdim\MPheight=\zeropoint\relax\ifdim\MPwidth=\zeropoint\relax
\def\next{\endinput\finishMPgraphic}%
\fi\fi
\fi
\next}
%D Unless defined otherwise, we simply ignore specialcomments.
\def\handleMPspecialcomment
{\doresetMPstack
\let\handleMPsequence\dohandleMPsequence
\handleMPsequence}
\let\handleMPspecialscomment\handleMPspecialcomment
%D We use the \type{page} comment as a signal that
%D stackbuilding can be started.
\def\handleMPpage #1 #2
{\doresetMPstack
\donetrue
\let\handleMPsequence\dohandleMPsequence
\handleMPsequence}
%D The same applies to the special extensions.
\def\handleMPspecialcommand
{\doresetMPstack
\let\handleMPsequence\dohandleMPsequence
\handleMPsequence}
%D \METAPOST\ draws its dots by moving to a location and
%D invoking \type{0 0 rlineto}. This operator is not
%D available in \PDF. Our solution is straightforward: we draw
%D a line from $(current\_x, current\_y)$ to itself. This
%D means that the arguments of the preceding \type{moveto} have
%D to be saved.
\def\lastMPmoveX{0}
\def\lastMPmoveY{0}
%D These saved coordinates are also used when we handle the
%D texts. Text handling proved to be a bit of a nuisance, but
%D finally I saw the light. It proved that we also had to
%D take care of \type{(split arguments)}.
\def\setMPfshowfont#1#2%
{\font\temp=#1\space at #2\relax\temp}
\let\MPfshowcommand\empty
\def\dohandleMPfshow
{\bgroup
\setbox\scratchbox\hbox
{\obeyMPspecials
\edef\size{\gMPa\nofMParguments}%
\ifx\size\PSnfont % round font size (to pt)
\advance\nofMParguments \minusone
\expandafter\scratchdimen\gMPa\nofMParguments\onepoint\relax
\ifdim\scratchdimen<\onepoint
\def\size{1pt}%
\else
\advance\scratchdimen .5\onepoint
\def\size##1.##2\relax{\def\size{##1pt}}%
\expandafter\size\the\scratchdimen\relax
\fi
\else
\edef\size{\size bp}%
\fi
\advance\nofMParguments \minusone
%\font\temp=\gMPa\nofMParguments\space at \size
\let\temp\relax % to be sure
\setMPfshowfont{\gMPa\nofMParguments}\size
\advance\nofMParguments \minusone
\temp
\MPfshowcommand
{\ifnum\nofMParguments=\plusone
\def\do(##1){##1}%
\dogMPa1%
\else
% we need to catch ( a ) (a a a) (\123 \123 \123) etc
\scratchcounter\plusone
\def\dodo##1% Andreas Fieger's bug: (\304...)
{\edef\!!stringa{##1\empty\empty}% and another one: ( 11) -> \ifx 11
\ifx\!!stringa\MPspacechar\MPspacechar\else\expandafter##1\fi}%
\def\do(##1{\dodo{##1}}%
\dogMPa\scratchcounter\MPspacechar
\let\do\relax
\loop
\advance\scratchcounter \plusone
\ifnum\scratchcounter<\nofMParguments\relax
\gMPa\scratchcounter\MPspacechar
\repeat
\def\do##1){\dodo{##1}}%
\dogMPa\scratchcounter
\fi
\unskip}}%
%
% this fails in some versions of pdftex
%
% \dimen0=\lastMPmoveY bp
% \advance\dimen0 by \ht0
% \ScaledPointsToBigPoints{\number\dimen0}\lastMPmoveY
% \PDFcode{n q 1 0 0 1 \lastMPmoveX\space\lastMPmoveY\space cm}%
% \dimen0=\ht0
% \advance\dimen0 by \dp0
% \box0
% \vskip-\dimen0
% \PDFcode{Q}%
% \egroup}
%
\setbox\scratchbox\hbox
{\hskip\lastMPmoveX\onebasepoint\raise\lastMPmoveY\onebasepoint\box\scratchbox}%
\ht\scratchbox\zeropoint
\dp\scratchbox\zeropoint
\wd\scratchbox\zeropoint
\box\scratchbox
\egroup}
\let\handleMPfshow\dohandleMPfshow % so we can overload this one later
%D You could consider the following definition to be the most
%D natural one.
% \def\MPspacechar{\space} % normal case
\def\MPspacechar{\char32\relax} % old solution does not work with math
%D However, the following implementation is more robust, since
%D some fonts have funny visible spaces in the space slot. This
%D gives a mismatch between the space that \METAPOST\ took into
%D account and the \quote {natural} space. This only happens in
%D labels, since \type {btex}||\type {etex} thingies don't have
%D spaces. This phenomena showed up when preparing the
%D \METAFUN\ manual, where Palatino fonts are used. We can
%D safely assume that \METAPOST\ considers \type {\char32} to
%D be the space.
\def\MPspacechar{\setbox\scratchbox\hbox{\char32}\kern\wd\scratchbox}
%D Well, this does not work with math fonts, so:
\def\MPspacechar{\char32\relax}
%D Most operators are just converted and keep their
%D arguments. Dashes however need a bit different treatment,
%D otherwise \PDF\ viewers complain loudly. Another
%D complication is that one argument comes after the \type{]}.
%D When reading the data, we simply ignore the array boundary
%D characters. We save ourselves some redundant newlines and
%D at the same time keep the output readable by packing the
%D literals.
\def\handleMPsetdash
{\bgroup
\def\somestring{[}%
\scratchcounter\plusone
\loop
\ifnum\scratchcounter<\nofMParguments
\edef\somestring{\somestring\space\gMPa\scratchcounter}%
\advance\scratchcounter \plusone
\repeat
\edef\somestring{\somestring]\gMPa\scratchcounter\space d}%
\PDFcode{\somestring}%
\egroup}
%D The \type{setlinewidth} commands looks a bit complicated. There are
%D two alternatives, that result in a similar look in both
%D $x$- and $y$-dorection. As John Hobby says:
%D
%D \startnarrower \switchtobodyfont[ss]
%D \starttyping
%D x 0 dtransform exch truncate exch idtransform pop setlinewidth
%D 0 y dtransform truncate idtransform setlinewidth pop
%D \stoptyping
%D
%D These are just fancy versions of \type{x setlinewidth} and
%D \type{y setlinewidth}. The \type{x 0 ...} form is used if
%D the path is {\em primarily vertical}. It rounds the width
%D so that vertical lines come out an integer number of pixels
%D wide in device space. The \type{0 y ...} form does the same
%D for paths that are {\em primarily horizontal}. The reason
%D why I did this is Knuth insists on getting exactly the
%D widths \TEX\ intends for the horizontal and vertical rules
%D in \type{btex...etex} output. (Note that PostScript scan
%D conversion rules cause a horizontal or vertical line of
%D integer width $n$ in device space to come out $n+1$ pixels
%D wide, regardless of the phase relative to the pixel grid.)
%D \stopnarrower
%D
%D The common operator in these sequences is \type{dtransform},
%D so we can use this one to trigger setting the linewidth.
\def\handleMPdtransform
{\ifdim\gMPa1\onepoint>\zeropoint
\PDFcode{\gMPa1 w}%
\def\next##1 ##2 ##3 ##4 ##5 ##6 {\handleMPsequence}%
\else
\PDFcode{\gMPa2 w}%
\def\next##1 ##2 ##3 ##4 {\handleMPsequence}%
\fi
\let\handleMPsequence\dohandleMPsequence
\resetMPstack
\next}
%D The most complicated command is \type{concat}. \METAPOST\
%D applies this operator to \type{stroke}. At that moment the
%D points set by \type{curveto} and \type{moveto}, are already
%D fixed. In \PDF\ however the \type{cm} operator affects the
%D points as well as the pen (stroke). Like more \PDF\
%D operators, \type{cm} is defined in a bit ambiguous way.
%D The only save route for non||circular penshapes, is saving
%D the path, recalculating the points and applying the
%D transformation matrix in such a way that we can be sure
%D that its behavior is well defined. This comes down to
%D inverting the path and applying \type{cm} to that path as
%D well as the pen. This all means that we have to save the
%D path.
%D In \METAPOST\ there are three ways to handle a path $p$:
%D
%D \starttyping
%D draw p; fill p; filldraw p;
%D \stoptyping
%D
%D The last case outputs a \type{gsave fill grestore} before
%D \type{stroke}. Handling the path outside the main loops
%D saves about 40\% run time.\footnoot{We can save some more by
%D following the \METAPOST\ output routine, but for the moment
%D we keep things simple.} Switching between the main loop and
%D the path loop is done by means of the recursely called
%D macro \type{\handleMPsequence}.
\def\handleMPpath
{\chardef\finiMPpath0
\let\closeMPpath\relax
\let\flushMPpath\flushnormalMPpath
\resetMPstack
\nofMPsegments\plusone
\let\handleMPsequence\dohandleMPpath
\dohandleMPpath}
%D Most paths are drawn with simple round pens. Therefore we've
%D split up the routine in two.
\def\flushnormalMPsegment
{\ifcase\getMPkeyword\relax
\PDFcode{\!MPgMPs1 \!MPgMPs2 l}%
\or
\PDFcode{\!MPgMPs1 \!MPgMPs2 \!MPgMPs3 \!MPgMPs4 \!MPgMPs5 \!MPgMPs6 c}%
\or
\PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}%
\or
\edef\lastMPmoveX{\gMPs1}% evt \!MP here
\edef\lastMPmoveY{\gMPs2}%
\PDFcode{\!MP\lastMPmoveX\space \!MP\lastMPmoveY\space m}%
\fi}
\def\flushconcatMPsegment
{\ifcase\getMPkeyword\relax
\doMPconcat{\gMPs1}\a{\gMPs2}\b%
\PDFcode{\!MP\a\space\!MP\b\space l}%
\or
\doMPconcat{\gMPs1}\a{\gMPs2}\b%
\doMPconcat{\gMPs3}\c{\gMPs4}\d%
\doMPconcat{\gMPs5}\e{\gMPs6}\f%
\PDFcode{\!MP\a\space\!MP\b\space
\!MP\c\space\!MP\d\space
\!MP\e\space\!MP\f\space c}%
\or
\bgroup
\noMPtranslate
\doMPconcat\lastMPmoveX\a\lastMPmoveY\b%
\PDFcode{\!MP\a\space\!MP\b\space l S}%
\egroup
\or
\edef\lastMPmoveX{\gMPs1}%
\edef\lastMPmoveY{\gMPs2}%
\doMPconcat\lastMPmoveX\a\lastMPmoveY\b%
\PDFcode{\!MP\a\space\!MP\b\space m}%
\fi}
% \def\flushnormalMPpath
% {\scratchcounter\nofMPsegments
% \nofMPsegments\plusone
% \loop
% \flushnormalMPsegment
% \advance\nofMPsegments \plusone
% \ifnum\nofMPsegments<\scratchcounter
% \repeat}
%
% \def\flushconcatMPpath
% {\scratchcounter\nofMPsegments
% \nofMPsegments\plusone
% \loop
% \flushconcatMPsegment
% \advance\nofMPsegments \plusone
% \ifnum\nofMPsegments<\scratchcounter
% \repeat}
%
% an alternative is presented below: (no \def assignment)
\def\doflushsomeMPpath
{\dodoflushsomeMPpath
\advance\nofMPsegments \plusone
\ifnum\nofMPsegments<\scratchcounter
\expandafter\doflushsomeMPpath
\fi}
\def\flushsomeMPpath
{\scratchcounter\nofMPsegments
\nofMPsegments\plusone
\doflushsomeMPpath}
\def\flushnormalMPpath{\let\dodoflushsomeMPpath\flushnormalMPsegment\flushsomeMPpath}
%OLD \def\flushconcatMPpath{\let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath}
%NEW pre-calculate 1/D so it needn't be repeated for each control point.
\def\flushconcatMPpath
{\MPreciprocaldeterminant
\let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath}
%D The transformation of the coordinates is handled by one of
%D the macros Tanmoy posted to the \PDFTEX\ mailing list.
%D I rewrote and optimized the original macro to suit the other
%D macros in this module.
%D
%D \starttyping
%D \doMPconcat {x position} \xresult {y position} \yresult
%D \stoptyping
%D
%D By setting the auxiliary \DIMENSIONS\ \type{\dimen0} upto
%D \type{\dimen10} only once per path, we save over 20\% run
%D time. Some more speed was gained by removing some parameter
%D passing. These macros can be optimized a bit more by using
%D more constants. There is however not much need for further
%D optimization because penshapes usually are round and
%D therefore need no transformation. Nevertheless we move the
%D factor to the outer level and use a bit different \type{pt}
%D removal macro. Although the values represent base points,
%D we converted them to pure points, simply because those can
%D be converted back.
%OLD \mathchardef\MPconcatfactor=256 % beware don't remove spaces before it
%OLD \def\doMPreducedimen#1
%OLD {\count0\MPconcatfactor
%OLD \advance\dimen#1 \ifdim\dimen#1>\zeropoint .5\else -.5\fi\count0
%OLD \divide\dimen#1 \count0\relax}
%OLD % too inaccurate (see old pragma logo)
%OLD
%OLD \def\doMPreducedimen#1
%OLD {\count0=\MPconcatfactor
%OLD \divide\dimen#1 \count0\relax}
%OLD \def\doMPreducedimen#1
%OLD {\advance\dimen#1 \ifdim\dimen#1>\zeropoint .5\else -.5\fi\MPconcatfactor
%OLD \divide\dimen#1 \MPconcatfactor}
%D The transformation code is rewritten by Daniel H. Luecking who
%D describes his patch as follows:
%D
%D We would like to divide 1 by $X4, but all divisions are integer so
%D for accuracy we want to convert to large integers and make sure the
%D integer quotient has as many significant digits as possible. Thus we
%D need to replace $1/X$ with $M/N$ where $N$ is as large as possible
%D and $M/N$ is as large as possible. Also for simplicity $M$ should be
%D a power of 2. So we make $M = 2^{30}$ \footnote{$2^{31} - 1$ is the
%D largest legal integer. Using it (and simply ignoring the inaccuracy
%D caused by $-1$) turns out to be at least as accurate in all cases,
%D and more accurate in some.} (largest legal power of 2) and adjust
%D $X4 downward (if necessary) to the the range $1-2^{16}$. This gives
%D at least 15 significant binary digits, (almost as accurate as
%D \METAPOST\ for numbers near 1) or almost 5 significant figures
%D (decimal).
\newcount\MPscratchCnt
\newdimen\MPscratchDim % will be assigned global
\def\MPadjustdimen % sets \MPscratchDim and \MPscratchCnt
{\MPscratchCnt\zerocount
\doMPadjustdimen}
\def\doMPadjustdimen
{\ifdim\MPscratchDim>\onepoint
\divide\MPscratchDim 2
\advance\MPscratchCnt \plusone
\expandafter\doMPadjustdimen
\fi}
%OLD \def\doMPexpanddimen#1
%OLD {\multiply\dimen#1 \MPconcatfactor\relax}
%D DHL: When viewed as an integer, $1 \hbox{pt}=2^{16}$ so $2^{32}/X$
%D is the right way to do $(1 \hbox{pt})/(X \hbox{pt})$ and get the
%D answer in points. But we are limited to $2^{30}/X$. However, we
%D actually do $[ 2^{30} / (X/2^K) ]*2^{2-K}$ where $K$ is the number
%D of halvings it takes to bring $X4 below $1 \hbox{pt}$. If $K$ is 0
%D or 1 we readjust by multiplying by 4 or 2, otherwise by halving
%D $(K-2)$ times \type {\MPscratchCnt} holds the value of $K$ from
%D \type {\MPadjustdimen}.
\def\MPreadjustdimen % acts on \MPscratchDim and MPscratchCnt
{\ifcase\MPscratchCnt
\multiply\MPscratchDim 4
\or
\multiply\MPscratchDim 2
\else
\expandafter\doMPreadjustdimen
\fi}
\def\doMPreadjustdimen
{\ifnum\MPscratchCnt > 2
\divide\MPscratchDim 2
\advance\MPscratchCnt \minusone
\expandafter\doMPreadjustdimen
\fi}
\def\MPreciprocaldeterminant
{\MPscratchDim\withoutpt\the\dimen0 \dimen6 % s_x*s_y
\advance\MPscratchDim - \withoutpt\the\dimen2 \dimen4 % s_x*s_y - r_x*r_y
\ifdim\MPscratchDim<\zeropoint % we need a positive dimension
\MPscratchDim-\MPscratchDim % for \MPadjustdimen
\doMPreciprocal
\MPscratchDim-\MPscratchDim
\else
\doMPreciprocal
\fi}
\newcount\MPnumerator \MPnumerator = 1073741824 % 2^{30}
% todo: dimexpr
\def\doMPreciprocal % replace \MPscratchDim with its reciprocal
{\ifdim\MPscratchDim=\onepoint \else
\MPadjustdimen
\scratchcounter\MPnumerator
\divide\scratchcounter\MPscratchDim
\MPscratchDim1\scratchcounter % 1 needed !
\MPreadjustdimen
\fi}
%OLD \def\presetMPconcat
%OLD {\dimen 0=\gMPs1\onepoint \doMPreducedimen 0 % r_x
%OLD \dimen 2=\gMPs2\onepoint \doMPreducedimen 2 % s_x
%OLD \dimen 4=\gMPs3\onepoint \doMPreducedimen 4 % s_y
%OLD \dimen 6=\gMPs4\onepoint \doMPreducedimen 6 % r_y
%OLD \dimen 8=\gMPs5\onepoint \doMPreducedimen 8 % t_x
%OLD \dimen10=\gMPs6\onepoint \doMPreducedimen10 } % t_y
%OLD
%OLD \def\presetMPscale
%OLD {\dimen 0=\gMPs1\onepoint \doMPreducedimen 0
%OLD \dimen 2 \zeropoint
%OLD \dimen 4 \zeropoint
%OLD \dimen 6=\gMPs2\onepoint \doMPreducedimen 6
%OLD \dimen 8 \zeropoint
%OLD \dimen10 \zeropoint}
\def\presetMPconcat
{\dimen 0=\gMPs1\onepoint % s_x
\dimen 2=\gMPs2\onepoint % r_x
\dimen 4=\gMPs3\onepoint % r_y
\dimen 6=\gMPs4\onepoint % s_y
\dimen 8=\gMPs5\onepoint % t_x
\dimen10=\gMPs6\onepoint} % t_y
\def\presetMPscale
{\dimen 0=\gMPs1\onepoint
\dimen 2 \zeropoint
\dimen 4 \zeropoint
\dimen 6=\gMPs2\onepoint
\dimen 8 \zeropoint
\dimen10 \zeropoint}
\def\noMPtranslate % use this one grouped
{\dimen 8 \zeropoint % t_x
\dimen10 \zeropoint} % t_y
%D \starttyping
%D \def\doMPconcat#1#2#3#4%
%D {\dimen12=#1 pt \doMPreducedimen12 % p_x
%D \dimen14=#3 pt \doMPreducedimen14 % p_y
%D %
%D \dimen16 \dimen 0
%D \multiply \dimen16 \dimen 6
%D \dimen20 \dimen 2
%D \multiply \dimen20 \dimen 4
%D \advance \dimen16 -\dimen20
%D %
%D \dimen18 \dimen12
%D \multiply \dimen18 \dimen 6
%D \dimen20 \dimen14
%D \multiply \dimen20 \dimen 4
%D \advance \dimen18 -\dimen20
%D \dimen20 \dimen 4
%D \multiply \dimen20 \dimen10
%D \advance \dimen18 \dimen20
%D \dimen20 \dimen 6
%D \multiply \dimen20 \dimen 8
%D \advance \dimen18 -\dimen20
%D %
%D \multiply \dimen12 -\dimen 2
%D \multiply \dimen14 \dimen 0
%D \advance \dimen12 \dimen14
%D \dimen20 \dimen 2
%D \multiply \dimen20 \dimen 8
%D \advance \dimen12 \dimen20
%D \dimen20 \dimen 0
%D \multiply \dimen20 \dimen10
%D \advance \dimen12 -\dimen20
%D %
%D \doMPreducedimen16
%D \divide \dimen18 \dimen16 \doMPexpanddimen18
%D \divide \dimen12 \dimen16 \doMPexpanddimen12
%D %
%D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime
%D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime
%D \stoptyping
%D The following optimization resulted from some tests by
%D and email exchanges with Sanjoy Mahajan.
%D
%D \starttyping
%D \def\doMPconcat#1#2#3#4%
%D {\dimen12=#1 pt \doMPreducedimen12 % p_x
%D \dimen14=#3 pt \doMPreducedimen14 % p_y
%D %
%D \dimen16 \dimen 0
%D \multiply \dimen16 \dimen 6
%D \dimen20 \dimen 2
%D \multiply \dimen20 \dimen 4
%D \advance \dimen16 -\dimen20
%D %
%D \dimen18 \dimen12
%D \multiply \dimen18 \dimen 6
%D \dimen20 \dimen14
%D \multiply \dimen20 \dimen 4
%D \advance \dimen18 -\dimen20
%D \dimen20 \dimen 4
%D \multiply \dimen20 \dimen10
%D \advance \dimen18 \dimen20
%D \dimen20 \dimen 6
%D \multiply \dimen20 \dimen 8
%D \advance \dimen18 -\dimen20
%D %
%D \multiply \dimen12 -\dimen 2
%D \multiply \dimen14 \dimen 0
%D \advance \dimen12 \dimen14
%D \dimen20 \dimen 2
%D \multiply \dimen20 \dimen 8
%D \advance \dimen12 \dimen20
%D \dimen20 \dimen 0
%D \multiply \dimen20 \dimen10
%D \advance \dimen12 -\dimen20
%D %
%D %\ifdim\dimen16>1pt % oeps, can be < 1pt too
%D \ifdim\dimen16=1pt \else
%D \ifdim\dimen16>\MPconcatfactor pt
%D \doMPreducedimen16
%D \divide \dimen18 \dimen16 \doMPexpanddimen18
%D \divide \dimen12 \dimen16 \doMPexpanddimen12
%D \else
%D \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18
%D \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12
%D \fi
%D \fi
%D %
%D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime
%D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime
%D \stoptyping
%D
%D But, this one is still too inaccurate, so we now have:
% \def\doMPconcat#1#2#3#4%
% {\dimen12=#1pt % p_x
% \dimen14=#3pt % p_y
% %
% % we should test for >-1024 too, but for the moment take the gamble
% \chardef\MPfactor1\ifdim\dimen12<1024pt \ifdim\dimen14<1024pt 6\fi\fi
% %
% \multiply\dimen12 \MPfactor
% \multiply\dimen14 \MPfactor
% %
% \doMPreducedimen12
% \doMPreducedimen14
% %
% \dimen16 \dimen 0
% \multiply \dimen16 \dimen 6
% \dimen20 \dimen 2
% \multiply \dimen20 \dimen 4
% \advance \dimen16 -\dimen20
% %
% \dimen18 \dimen12
% \multiply \dimen18 \dimen 6
% \dimen20 \dimen14
% \multiply \dimen20 \dimen 4
% \advance \dimen18 -\dimen20
% \dimen20 \dimen 4
% \multiply \dimen20 \dimen10
% \advance \dimen18 \dimen20
% \dimen20 \dimen 6
% \multiply \dimen20 \dimen 8
% \advance \dimen18 -\dimen20
% %
% \multiply \dimen12 -\dimen 2
% \multiply \dimen14 \dimen 0
% \advance \dimen12 \dimen14
% \dimen20 \dimen 2
% \multiply \dimen20 \dimen 8
% \advance \dimen12 \dimen20
% \dimen20 \dimen 0
% \multiply \dimen20 \dimen10
% \advance \dimen12 -\dimen20
% %
% \ifdim\dimen16=1pt \else
% \ifdim\dimen16>\MPconcatfactor pt
% \doMPreducedimen16
% \divide \dimen18 \dimen16 \doMPexpanddimen18
% \divide \dimen12 \dimen16 \doMPexpanddimen12
% \else
% \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18
% \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12
% \fi
% \fi
% %
% \divide\dimen18 \MPfactor
% \divide\dimen12 \MPfactor
% %
% \edef#2{\withoutpt\the\dimen18}% % p_x^\prime
% \edef#4{\withoutpt\the\dimen12}} % p_y^\prime
%D We cannot use \type {\beginETEX} here since in plain we
%D get \type {\outer} problems, sigh.
%OLD \beginTEX
%OLD
%OLD \def\MPcriteriumA {512pt} % scale
%OLD \def\MPcriteriumB {2pt} % scale
%OLD
%OLD \endTEX
%OLD
%OLD \ifx\MPcriteriumA\undefined
%OLD
%OLD \newdimen\MPcriteriumA \MPcriteriumA=512pt
%OLD \newdimen\MPcriteriumB \MPcriteriumB= 2pt
%OLD
%OLD \fi
%OLD \def\doMPconcat#1#2#3#4%
%OLD {\dimen12=#1pt % p_x
%OLD \dimen14=#3pt % p_y
%OLD %
%OLD \chardef\MPfactor\zerocount
%OLD \ifdim\dimen4<\MPcriteriumB\ifdim\dimen4>-\MPcriteriumB
%OLD \ifdim\dimen6<\MPcriteriumB\ifdim\dimen6>-\MPcriteriumB
%OLD \ifdim\dimen8<\MPcriteriumB\ifdim\dimen8>-\MPcriteriumB
%OLD \ifdim\dimen10<\MPcriteriumB\ifdim\dimen10>-\MPcriteriumB
%OLD \chardef\MPfactor\plusone
%OLD \fi\fi
%OLD \fi\fi
%OLD \fi\fi
%OLD \fi\fi
%OLD \ifcase\MPfactor % spurious 0 removed
%OLD \chardef\MPfactor\plusone
%OLD \ifdim\dimen12<\MPcriteriumA\ifdim\dimen12>-\MPcriteriumA
%OLD \ifdim\dimen14<\MPcriteriumA\ifdim\dimen14>-\MPcriteriumA
%OLD \chardef\MPfactor16
%OLD \fi\fi
%OLD \fi\fi
%OLD \fi
%OLD %
%OLD \multiply\dimen12 \MPfactor
%OLD \multiply\dimen14 \MPfactor
%OLD %
%OLD \doMPreducedimen12
%OLD \doMPreducedimen14
%OLD %
%OLD \dimen16 \dimen 0
%OLD \multiply \dimen16 \dimen 6
%OLD \dimen20 \dimen 2
%OLD \multiply \dimen20 \dimen 4
%OLD \advance \dimen16 -\dimen20
%OLD %
%OLD \dimen18 \dimen12
%OLD \multiply \dimen18 \dimen 6
%OLD \dimen20 \dimen14
%OLD \multiply \dimen20 \dimen 4
%OLD \advance \dimen18 -\dimen20
%OLD \dimen20 \dimen 4
%OLD \multiply \dimen20 \dimen10
%OLD \advance \dimen18 \dimen20
%OLD \dimen20 \dimen 6
%OLD \multiply \dimen20 \dimen 8
%OLD \advance \dimen18 -\dimen20
%OLD %
%OLD \multiply \dimen12 -\dimen 2
%OLD \multiply \dimen14 \dimen 0
%OLD \advance \dimen12 \dimen14
%OLD \dimen20 \dimen 2
%OLD \multiply \dimen20 \dimen 8
%OLD \advance \dimen12 \dimen20
%OLD \dimen20 \dimen 0
%OLD \multiply \dimen20 \dimen10
%OLD \advance \dimen12 -\dimen20
%OLD %
%OLD \ifdim\dimen16=\onepoint \else
%OLD \ifdim\dimen16>\MPconcatfactor \onepoint \relax
%OLD \doMPreducedimen16
%OLD \divide \dimen18 \dimen16 \doMPexpanddimen18
%OLD \divide \dimen12 \dimen16 \doMPexpanddimen12
%OLD \else
%OLD \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18
%OLD \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12
%OLD \fi
%OLD \fi
%OLD %
%OLD \divide\dimen18 \MPfactor
%OLD \divide\dimen12 \MPfactor
%OLD %
%OLD \edef#2{\withoutpt\the\dimen18}% % p_x^\prime
%OLD \edef#4{\withoutpt\the\dimen12}} % p_y^\prime
%D DHL: Ideally, $r_x$, $r_y$, $s_x4, $s_y$ should be in macros, not
%D dimensions (they are scalar quantities after all, not lengths). I
%D suppose the authors decided to do calculations with integer
%D arithmetic instead of using real factors because it's faster.
%D However, the actual macros test slower, possibly because I've
%D omitted three nested loops. In my test files, my approach is more
%D accurate. It is also far simpler and overflow does not seem to be a
%D significant concern. The scale factors written by Metapost are (?)
%D always $<=1$ (it scales coordinates internally) and coordinates are
%D always likely to be less than \type {\maxdimen}.
%D
%D If this should ever cause problems, the scale factors can be reduced.
\def\doMPconcat#1#2#3#4%
{\dimen12=#1pt % p_x % #1\onepoint
\dimen14=#3pt % p_y % #3\onepoint
\advance\dimen12 -\dimen8 % p_x - t_x
\advance\dimen14 -\dimen10 % p_y - t_y
\dimen18=\withoutpt\the\dimen6 \dimen12 % s_y(p_x - t_x)
\advance\dimen18 -\withoutpt\the\dimen4 \dimen14 % - r_y(p_y-t_y)
\dimen14=\withoutpt\the\dimen0 \dimen14 % s_x(p_y-t_y)
\advance\dimen14 -\withoutpt\the\dimen2 \dimen12 % - r_x(p_x-t_x)
% \MPscratchDim contains precomputed 1/D:
\dimen18=\withoutpt\the\MPscratchDim \dimen18
\dimen14=\withoutpt\the\MPscratchDim \dimen14
\edef#2{\withoutpt\the\dimen18}% % p_x^\prime
\edef#4{\withoutpt\the\dimen14}} % p_y^\prime
%D One reason for Daniel to write this patch was that at small sizes
%D the accuracy was less than optimal. Here is a test that demonstrates
%D that his alternative is pretty good:
%D
%D \startlinecorrection
%D \startMPcode
%D for i = 5cm,1cm,5mm,1mm,.5mm,.1mm,.01mm :
%D draw fullcircle scaled i withpen pencircle xscaled (i/10) yscaled (i/20) rotated 45 ;
%D endfor ;
%D \stopMPcode
%D \stoplinecorrection
%D The following explanation of the conversion process was
%D posted to the \PDFTEX\ mailing list by Tanmoy. The original
%D macro was part of a set of macro's that included sinus and
%D cosinus calculations as well as scaling and translating. The
%D \METAPOST\ to \PDF\ conversion however only needs
%D transformation.
%M \start \switchtobodyfont [ss]
%D Given a point $(U_x, U_y)$ in user coordinates, the business
%D of \POSTSCRIPT\ is to convert it to device space. Let us say
%D that the device space coordinates are $(D_x, D_y)$. Then, in
%D \POSTSCRIPT\ $(D_x, D_y)$ can be written in terms of
%D $(U_x, U_y)$ in matrix notation, either as
%D
%D \placeformula
%D \startformula
%D \pmatrix{D_x&D_y&1\cr} = \pmatrix{U_x&U_y&1\cr}
%D \pmatrix{s_x&r_x&0\cr
%D r_y&s_y&0\cr
%D t_x&t_y&1\cr}
%D \stopformula
%D
%D or
%D
%D \placeformula
%D \startformula
%D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x&r_y&t_x\cr
%D r_x&s_y&t_y\cr
%D 0 &0 &1 \cr}
%D \pmatrix{U_x\cr
%D U_y\cr
%D 1 \cr}
%D \stopformula
%D
%D both of which is a shorthand for the same set of equations:
%D
%D \placeformula
%D \startformula
%D D_x = s_x U_x + r_y U_y + t_x
%D \stopformula
%D
%D \placeformula
%D \startformula
%D D_y = r_x U_x + s_y U_y + t_y
%D \stopformula
%D
%D which define what is called an `affine transformation'.
%D
%D \POSTSCRIPT\ represents the `transformation matrix' as a
%D six element matrix instead of a $3\times 3$ array because
%D three of the elements are always~0, 0 and~1. Thus the above
%D transformation is written in postscript as $[s_x\, r_x\,
%D r_y\, s_y\, t_x\, t_y]$. However, when doing any
%D calculations, it is useful to go back to the original
%D matrix notation (whichever: I will use the second) and
%D continue from there.
%D
%D As an example, if the current transformation matrix is
%D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$ and you say \typ{[a b
%D c d e f] concat}, this means:
%D
%D \startnarrower
%D Take the user space coordinates and transform them to an
%D intermediate set of coordinates using array $[a\, b\, c\, d\,
%D e\, f]$ as the transformation matrix.
%D
%D Take the intermediate set of coordinates and change them to
%D device coordinates using array $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$
%D as the transformation matrix.
%D \stopnarrower
%D
%D Well, what is the net effect? In matrix notation, it is
%D
%D \placeformula
%D \startformula
%D \pmatrix{I_x\cr I_y\cr 1\cr} = \pmatrix{a&c&e\cr
%D b&d&f\cr
%D 0&0&1\cr}
%D \pmatrix{U_x\cr
%D U_y\cr
%D 1 \cr}
%D \stopformula
%D
%D \placeformula
%D \startformula
%D \pmatrix{D_y\cr D_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr
%D r_x&s_y&t_y\cr
%D 0 &0 &1 \cr}
%D \pmatrix{I_x\cr
%D I_y\cr
%D 1 \cr}
%D \stopformula
%D
%D where $(I_x, I_y)$ is the intermediate coordinate.
%D
%D Now, the beauty of the matrix notation is that when there is
%D a chain of such matrix equations, one can always compose
%D them into one matrix equation using the standard matrix
%D composition law. The composite matrix from two matrices can
%D be derived very easily: the element in the $i$\high{th}
%D horizontal row and $j$\high{th} vertical column is
%D calculated by`multiplying' the $i$\high{th} row of the first
%D matrix and the $j$\high{th} column of the second matrix (and
%D summing over the elements). Thus, in the above:
%D
%D \placeformula
%D \startformula
%D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr
%D r_x^\prime&s_y^\prime&t_y^\prime\cr
%D 0 &0 &0 \cr}
%D \pmatrix{U_x\cr
%D U_y\cr
%D 1 \cr}
%D \stopformula
%D
%D with
%D
%D \placeformula
%D \startformula
%D \eqalign
%D {s_x^\prime & = s_x a + r_y b \cr
%D r_x^\prime & = r_x a + s_y b \cr
%D r_y^\prime & = s_x c + r_y d \cr
%D s_y^\prime & = r_x c + s_y d \cr
%D t_x^\prime & = s_x e + r_y f + t_x \cr
%D t_y^\prime & = r_x e + s_y f + t_y \cr}
%D \stopformula
%D In fact, the same rule is true not only when one is going
%D from user coordinates to device coordinates, but whenever
%D one is composing two `transformations' together
%D (transformations are `associative'). Note that the formula
%D is not symmetric: you have to keep track of which
%D transformation existed before (i.e.\ the equivalent of
%D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$) and which was
%D specified later (i.e.\ the equivalent of $[a\, b\, c\, d\,
%D e\, f]$). Note also that the language can be rather
%D confusing: the one specified later `acts earlier',
%D converting the user space coordinates to intermediate
%D coordinates, which are then acted upon by the pre||existing
%D transformation. The important point is that order of
%D transformation matrices cannot be flipped (transformations
%D are not `commutative').
%D
%D Now what does it mean to move a transformation matrix
%D before a drawing? What it means is that given a point
%D $(P_x, P_y)$ we need a different set of coordinates
%D $(P_x^\prime, P_y^\prime)$ such that if the transformation
%D acts on $(P_x^\prime, P_y^\prime)$, they produce $(P_x,
%D P_y)$. That is we need to solve the set of equations:
%D
%D \placeformula
%D \startformula
%D \pmatrix{P_x\cr P_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr
%D r_x&s_y&t_y\cr
%D 0 &0 &1 \cr}
%D \pmatrix{P_x^\prime\cr
%D P_y^\prime\cr
%D 1 \cr}
%D \stopformula
%D
%D Again matrix notation comes in handy (i.e. someone has
%D already solved the problem for us): we need the inverse
%D transformation matrix. The inverse transformation matrix can
%D be calculated very easily:
%D
%D \placeformula
%D \startformula
%D \pmatrix{P_x^\prime\cr P_y^\prime\cr 1\cr} =
%D \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr
%D r_x^\prime&s_y^\prime&t_y^\prime\cr
%D 0 &0 &1 \cr}
%D \pmatrix{P_x\cr
%D P_y\cr
%D 1 \cr}
%D \stopformula
%D
%D where, the inverse transformation matrix is given by
%D
%D \placeformula
%D \startformula
%D \eqalign
%D {D & = s_x s_y - r_x r_y \cr
%D s_x^\prime & = s_y / D \cr
%D s_y^\prime & = s_x / D \cr
%D r_x^\prime & = - r_x / D \cr
%D r_y^\prime & = - r_y / D \cr
%D t_x^\prime & = ( - s_y t_x + r_y t_y ) / D \cr
%D t_y^\prime & = ( r_x t_x - s_x t_y ) / D \cr}
%D \stopformula
%D
%D And you can see that when expanded out, this does
%D give the formulas:
%D
%D \placeformula
%D \startformula
%D P_x^\prime = { { s_y(p_x-t_x) + r_y(t_y-p_y) } \over
%D { s_x s_y-r_x r_y } }
%D \stopformula
%D
%D \placeformula
%D \startformula
%D P_y^\prime = { { s_x(p_y-t_y) + r_x(t_x-p_x) } \over
%D { s_x*s_y-r_x*r_y } }
%D \stopformula
%D
%D The code works by representing a real number by converting
%D it to a dimension to be put into a \DIMENSION\ register: 2.3 would
%D be represented as 2.3pt for example. In this scheme,
%D multiplying two numbers involves multiplying the \DIMENSION\
%D registers and dividing by 65536. Accuracy demands that the
%D division be done as late as possible, but overflow
%D considerations need early division.
%D
%D Division involves dividing the two \DIMENSION\ registers and
%D multiplying the result by 65536. Again, accuracy would
%D demand that the numerator be multiplied (and|/|or the
%D denominator divided) early: but that can lead to overflow
%D which needs to be avoided.
%D
%D If nothing is known about the numbers to start with (in
%D concat), I have chosen to divide the 65536 as a 256 in each
%D operand. However, in the series calculating the sine and
%D cosine, I know that the terms are small (because I never
%D have an angle greater than 45 degrees), so I chose to
%D apportion the factor in a different way.
%M \stop
%D The path is output using the values saved on the stack. If
%D needed, all coordinates are recalculated.
\def\finishMPpath
{\PDFcode{\ifcase\finiMPpath W n\or S\or f\or B\fi}}
\def\processMPpath
{\checkMPpath
\ifcase\nofMPsegments\else
\flushMPpath
\closeMPpath
\finishMPpath
\fi
\let\handleMPsequence\dohandleMPsequence
\resetMPstack
\nofMPsegments\zerocount
\handleMPsequence}
%D The following \METAPOST\ code is quite valid but, when
%D processed and converted to \PDF, will make a file
%D unprintable on a Hewlett Packard printer (from Acrobat
%D $v<=5$). Who is to blame, the driver of the OS layer in
%D between, is hard to determine, so we add an additional
%D check.
%D
%D \starttyping
%D clip currentpicture to origin -- cycle ;
%D setbounds currentpicture to fullsquare scaled 5cm ;
%D \stoptyping
\def\checkMPpath
{\ifcase\finiMPpath
\ifnum\nofMPsegments<3 % n is one ahead
\message{omitting zero clip path}%
\nofMPsegments\zerocount
\fi
\fi}
%D In \PDF\ the \type{cm} operator must precede the path
%D specification. We therefore can output the \type{cm} at
%D the moment we encounter it.
\def\handleMPpathconcat
{\presetMPconcat
\PDFcode{\gMPs1 \gMPs2 \gMPs3 \gMPs4 \gMPs5 \gMPs6 cm}%
\resetMPstack}
\def\handleMPpathscale
{\presetMPscale
\PDFcode{\gMPs1 0 0 \gMPs2 0 0 cm}%
\resetMPstack}
%D This macro interprets the path and saves it as compact as
%D possible.
\def\dohandleMPpath#1%
{\ifcase\lccode`#1\relax
\@EA\dohandleMPpathA
\else
\@EA\dohandleMPpathB
\fi#1}
%\def\dohandleMPpathA#1 %
% {\setMPargument{#1}%
% \handleMPsequence}
\let\dohandleMPpathA\setMPsequence
\def\dohandleMPpathB#1 %
{\def\somestring{#1}%
\ifx\somestring\PSlineto
\setMPkeyword0
\else\ifx\somestring\PScurveto
\setMPkeyword1
\else\ifx\somestring\PSrlineto
\setMPkeyword2
\else\ifx\somestring\PSmoveto
\setMPkeyword3
\else\ifx\somestring\PSclip
% \chardef\finiMPpath0 % already
\let\handleMPsequence\processMPpath
\else\ifx\somestring\PSgsave
\chardef\finiMPpath3
\else\ifx\somestring\PSgrestore
\else\ifx\somestring\PSfill
\ifcase\finiMPpath
\chardef\finiMPpath2
\let\handleMPsequence\processMPpath
\fi
\else\ifx\somestring\PSstroke
\ifcase\finiMPpath
\chardef\finiMPpath1
\fi
\let\handleMPsequence\processMPpath
\else\ifx\somestring\PSclosepath
\def\closeMPpath{\PDFcode{h}}%
\else\ifx\somestring\PSconcat
\let\flushMPpath\flushconcatMPpath
\handleMPpathconcat
\else\ifx\somestring\PSscale
\let\flushMPpath\flushconcatMPpath
\handleMPpathscale
\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
\handleMPsequence}
%D The main conversion command is:
%D
%D \starttyping
%D \convertMPtoPDF {filename} {x scale} {y scale}
%D \stoptyping
%D
%D The dimensions are derived from the bounding box. So we
%D only have to say:
%D
%D \starttyping
%D \convertMPtoPDF{mp-pra-1.eps}{1}{1}
%D \convertMPtoPDF{mp-pra-1.eps}{.5}{.5}
%D \stoptyping
%D \macros
%D {makeMPintoPDFobject,lastPDFMPobject}
%D
%D For experts there are a few more options. When attributes
%D are to be added, the code must be embedded in an object
%D accompanied with the appropriate directives. One can
%D influence this process with \type {\makeMPintoPDFobject}.
%D
%D This option defaults to~0, because \CONTEXT\ takes care
%D of objects at another level, which saves some bytes.
%D
%D \starttabulate[|l|l|p|]
%D \NC 0 \NC never \NC don't use an object \NC\NR
%D \NC 1 \NC always \NC always use an object \NC\NR
%D \NC 2 \NC optional \NC use object when needed \NC\NR
%D \stoptabulate
%D
%D The last object number used is avaliable in the macro
%D \type {\lastPDFMPobject}.
\ifx\makeMPintoPDFobject\undefined \chardef\makeMPintoPDFobject=0 \fi
\def\lastPDFMPobject{0}
%D The additional code needed can be made available in the
%D (global) macro \type {\currentPDFresources}.
\let\currentPDFresources\empty
\newtoks\everyMPtoPDFconversion
\def\convertMPtoPDF % #1#2#3%
{\bgroup
\ifx\pdfdecimaldigits\undefined\else \pdfdecimaldigits=5 \fi % new
\setbox\scratchbox\vbox\bgroup
\forgetall
\offinterlineskip
\startMPresources
\doprocessMPtoPDFfile} %
%D The next one is kind of private and probably will become obsolete):
\def\processMPtoPDFfile % file xscale yscale
{\bgroup
\let\finishMPgraphic\egroup
\doprocessMPtoPDFfile}
\def\doprocessMPtoPDFfile#1#2#3% file xscale yscale
{% the following line is needed for latex where onepoint is not
% onepoint but a number (maxdimen); some day i'll make a latex
% variant of this file so that i no longer have to deal with such
% issues; then i'll also speed up this module using a few context
% tricks
%
\let\onepoint\onerealpoint
%
\setMPspecials
\the\everyMPtoPDFconversion
\catcode`\^^M=\@@endofline
\startMPscanning
\let\do\empty
\xdef\MPxscale{#2}%
\xdef\MPyscale{#3}%
\xdef\MPxoffset{0}%
\xdef\MPyoffset{0}%
\xdef\MPyshift{\zeropoint}%
\donefalse
\let\handleMPsequence\dohandleMPsequence
\message{[MP to PDF]}% was: [MP to PDF #1] but there is a (#1) anyway
\input#1\relax}
% strange rounding/clip in pdftex/viewer
%
% \def\finishMPgraphic
% {\stopMPresources
% \egroup
% \ifx\pdftexversion\undefined\else\ifnum\pdftexversion<14 % for the moment
% \chardef\makeMPintoPDFobject=0
% \fi\fi
% \ifcase\makeMPintoPDFobject\or\or\ifx\currentPDFresources\empty\else
% \chardef\makeMPintoPDFobject=1
% \fi\fi
% \setbox\scratchbox=\vbox
% {\forgetall
% \hbox
% {\PDFcode{q \MPxscale\space 0 0 \MPyscale\space \MPxoffset\space \MPyoffset\space cm}%
% \lower\MPyshift\box\scratchbox % unscaled shift
% \PDFcode{Q}}}%
% \ht\scratchbox\MPheight
% \wd\scratchbox\MPwidth
% \dp\scratchbox\zeropoint
% \ifcase\makeMPintoPDFobject
% \box\scratchbox
% \or
% \immediate\pdfxform resources{\currentPDFresources}\scratchbox
% \xdef\lastPDFMPobject{\the\pdflastxform}%
% \pdfrefxform\lastPDFMPobject
% \global\let\currentPDFresources\empty
% \else
% \box\scratchbox
% \fi
% \egroup}
%
% funny clip in viewer
%
% \setbox\scratchbox=\vbox
% {\forgetall
% \dimen0=\MPllx bp
% \dimen2=\MPlly bp
% \setbox\scratchbox=\hbox{\hskip-\dimen0\raise-\dimen2\box\scratchbox}%
% \ht\scratchbox=\zeropoint
% \dp\scratchbox=\zeropoint
% \wd\scratchbox=\zeropoint
% \hbox
% {\PDFcode{q \MPxscale\space 0 0 \MPyscale\space 0 0 cm}%
% \lower\MPshift\box\scratchbox
% \PDFcode{Q}}}%
% \let\PDFMPformoffset\zeropoint
\def\PDFMPformoffset
{\ifx\objectoffset\undefined\zeropoint\else\objectoffset\fi}
\def\finishMPgraphic
{\stopMPresources
\egroup
\setbox\scratchbox\vbox
{\forgetall
\hbox
{\PDFcode{q \MPxscale\space 0 0 \MPyscale\space \MPxoffset\space \MPyoffset\space cm}%
\lower\MPyshift\box\scratchbox % unscaled shift
\PDFcode{Q}}}%
\ht\scratchbox\MPheight
\wd\scratchbox\MPwidth
\dp\scratchbox\zeropoint\relax
\dopackageMPgraphic\scratchbox
\egroup
\endinput}
%D Alternative for \PDFTEX. We cannot come up with something more contexy
%D because this module is also used in \LATEX.
\def\dopackageMPgraphic#1% #1 = boxregister
{%\ifx\pdfxform\undefined
% \chardef\makeMPintoPDFobject\zerocount % no pdftex at all
%\else\ifx\pdftexversion\undefined
% \chardef\makeMPintoPDFobject\zerocount % no pdftex at all
%\else\ifnum\pdftexversion<14
% \chardef\makeMPintoPDFobject\zerocount % no resource support
%\else
% % keep the default value
%\fi\fi\fi
\ifcase\makeMPintoPDFobject\or\or\ifx\currentPDFresources\empty\else
% an existing value of 2 signals object support (set elsewhere)
\chardef\makeMPintoPDFobject\plusone
\fi\fi
\ifcase\makeMPintoPDFobject
\box#1%
\or
\scratchdimen\PDFMPformoffset\relax
\ifdim\scratchdimen>\zeropoint % compensate for error
\setbox#1\vbox spread 2\scratchdimen
{\forgetall\vss\hbox spread 2\scratchdimen{\hss\box#1\hss}\vss}%
\fi
\setMPPDFobject{\currentPDFresources}{#1}%
\ifdim\scratchdimen>\zeropoint % compensate for error
\vbox to \MPheight
{\forgetall\vss\hbox to \MPwidth{\hss\getMPPDFobject\hss}\vss}%
\else
\getMPPDFobject
\fi
\global\let\currentPDFresources\empty
\else
\box#1%
\fi}
\def\setMPPDFobject#1#2% resources boxnumber
{\ifx\pdfxform\undefined
\def\getMPPDFobject{\box#2}%
\else\ifx\pdftexversion\undefined
\def\getMPPDFobject{\box#2}%
\else\ifnum\pdftexversion<14
\def\getMPPDFobject{\box#2}%
\else
\immediate\pdfxform resources{#1}#2%
\edef\getMPPDFobject{\noexpand\pdfrefxform\the\pdflastxform}%
\fi\fi\fi}
\let\getMPPDFobject\relax
%D \macros
%D {deleteMPgraphic,
%D startMPresources,
%D stopMPresources}
%D
%D Here are a few hooks for \CONTEXT\ specific things.
\ifx\deleteMPgraphic\undefined
\def\deleteMPgraphic#1{}
\fi
\ifx\startMPresources\undefined
\let\startMPresources\relax
\let\stopMPresources\relax
\fi
%D \macros
%D {twodigitMPoutput}
%D
%D We can limit the precision to two digits after the comma
%D by saying:
%D
%D \starttyping
%D \twodigitMPoutput
%D \stoptyping
%D
%D This option only works in \CONTEXT\ combined with \ETEX.
\def\twodigitMPoutput
{\let\!MP \twodigitrounding
\def\!MPgMPs##1{\twodigitrounding{\gMPs##1}}%
\def\!MPgMPa##1{\twodigitrounding{\gMPa##1}}}
\let\!MP \empty
\let\!MPgMPa\gMPa
\let\!MPgMPs\gMPs
%D This kind of conversion is possible because \METAPOST\
%D does all the calculations. Converting other \POSTSCRIPT\
%D files would drive both me and \TEX\ crazy.
\ifx\undefined\StopLatexHack \else \StopLatexHack \fi
\protect \endinput