Current File : //usr/share/texlive/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-numberprinting.tex |
\section{Number Printing}
\label{pgfmath-numberprinting}
{\emph{An extension by Christian Feuersänger}}
\medskip
\noindent
\pgfname\ supports number printing in different styles and rounds to arbitrary
precision.
\begin{command}{\pgfmathprintnumber\marg{x}}
Generates pretty-printed output for the (real) number \meta{x}. The input
number \meta{x} is parsed using |\pgfmathfloatparsenumber| which allows
arbitrary precision.
Numbers are typeset in math mode using the current set of number printing
options, see below. Optional arguments can also be provided using
|\pgfmathprintnumber[|\meta{options}|]|\meta{x}.
\end{command}
\begin{command}{\pgfmathprintnumberto\marg{x}\marg{macro}}
Returns the resulting number into \meta{macro} instead of typesetting it
directly.
\end{command}
\begin{key}{/pgf/number format/fixed}
Configures |\pgfmathprintnumber| to round the number to a fixed number of
digits after the period, discarding any trailing zeros.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the appearance.
\end{key}
\begin{key}{/pgf/number format/fixed zerofill=\marg{boolean} (default true)}
Enables or disables zero filling for any number drawn in fixed point
format.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
%
This key affects numbers drawn with |fixed| or |std| styles (the latter
only if no scientific format is chosen).
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,std,fixed zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-05}\hspace{1em}
\pgfmathprintnumber{1}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the appearance.
\end{key}
\begin{key}{/pgf/number format/sci}
Configures |\pgfmathprintnumber| to display numbers in scientific format,
that means sign, mantissa and exponent (basis~$10$). The mantissa is
rounded to the desired |precision| (or |sci precision|, see below).
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
See section~\ref{sec:number:styles} for how to change the exponential
display style.
\end{key}
\begin{key}{/pgf/number format/sci zerofill=\marg{boolean} (default true)}
Enables or disables zero filling for any number drawn in scientific format.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci zerofill,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
%
As with |fixed zerofill|, this option does only affect numbers drawn in
|sci| format (or |std| if the scientific format is chosen).
See section~\ref{sec:number:styles} for how to change the exponential
display style.
\end{key}
\begin{stylekey}{/pgf/number format/zerofill=\marg{boolean} (default true)}
Sets both |fixed zerofill| and |sci zerofill| at once.
\end{stylekey}
\begin{keylist}{/pgf/number format/std,%
/pgf/number format/std=\meta{lower e},
/pgf/number format/std=\meta{lower e}:\meta{upper e}%
}
Configures |\pgfmathprintnumber| to a standard algorithm. It chooses either
|fixed| or |sci|, depending on the order of magnitude. Let $n=s \cdot m
\cdot 10^e$ be the input number and $p$ the current precision. If $-p/2 \le
e \le 4$, the number is displayed using |fixed| format. Otherwise, it is
displayed using |sci| format.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,std,precision=2}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
%
The parameters can be customized using the optional integer argument(s): if
$\text{\meta{lower e}} \le e \le \text{\meta{upper e}}$, the number is
displayed in |fixed| format, otherwise in |sci| format. Note that
\meta{lower e} should be negative for useful results. The precision used
for the scientific format can be adjusted with |sci precision| if
necessary.
\end{keylist}
\begin{keylist}{/pgf/number format/relative*=\meta{exponent base 10}}
Configures |\pgfmathprintnumber| to format numbers relative to an order of
magnitude, $10^r$, where $r$ is an integer number.
This key addresses different use-cases.
\paragraph{First use-case:}
provide a unified format for a \emph{sequence} of numbers. Consider the
following test:
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={1}}
\pgfmathprintnumber{6.42e-16}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{6}\hspace{1em}
\pgfmathprintnumber{20.6}\hspace{1em}
\pgfmathprintnumber{87}
\end{codeexample}
%
\noindent With any other style, the |6.42e-16| would have been formatted as
an isolated number. Here, it is rounded to |0| because when viewed relative
to $10^1$ (the exponent $1$ is the argument for |relative|), it has no
significant digits.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={2}}
\pgfmathprintnumber{123.345}\hspace{1em}
\pgfmathprintnumber{0.0012}\hspace{1em}
\pgfmathprintnumber{0.0014}\hspace{1em}
\end{codeexample}
%
\noindent The example above applies the initial |precision=2| to |123.345|
-- relative to $100$. Two significant digits of |123.345| relative to $100$
are |123|. Note that the ``$2$ significant digits of |123.345|'' translates
to ``round |1.2345| to $2$ digits'', which would yield |1.2300|. Similarly,
the other two numbers are |0| compared to $100$ using the given
|precision|.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/relative*={-3}}
\pgfmathprintnumber{123.345}\hspace{1em}
\pgfmathprintnumber{0.0012}\hspace{1em}
\pgfmathprintnumber{0.0014}\hspace{1em}
\end{codeexample}
\paragraph{Second use-case:}
improve rounding in the presence of \emph{inaccurate} numbers. Let us
suppose that some limited-precision arithmetics resulted in the result
|123456999| (like the |fpu| of \pgfname). You know that its precision is
about five or six significant digits. And you want to provide a fixed point
output. In this case, the trailing digits |....999| are a numerical
artifact due to the limited precision. Use |relative*=3,precision=0| to
eliminate the artifacts:
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,relative*={3},precision=0}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
%
\noindent Here, |precision=0| means that we inspect |123456.999| and round
that number to $0$ digits. Finally, we move the period back to its initial
position. Adding |relative style=fixed| results in fixed point output
format:
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,relative*={3},precision=0,relative style=fixed}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
%
\noindent Note that there is another alternative for this use-case which is
discussed later: the |fixed relative| style.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed relative,precision=6}
\pgfmathprintnumber{123456999}\hspace{1em}
\pgfmathprintnumber{123456999.12}
\end{codeexample}
You might wonder why there is an asterisk in the key's name. The short
answer is: there is also a \declareandlabel{/pgf/number format/relative}
number printer which does unexpected things. The key |relative*| repairs
this. Existing code will still use the old behavior.
Technically, the key works as follows: as already explained above,
|relative*=3| key applied to |123456999.12| moves the period by three
positions and analyzes |123456.99912|. Mathematically speaking, we are
given a number $x = \pm m \cdot 10^e$ and we attempt to apply
|relative*=|$r$. The method then rounds $x / 10^r$ to |precision| digits.
Afterwards, it multiplies the result by $10^r$ and typesets it.
\end{keylist}
\begin{stylekey}{/pgf/number format/every relative}
A style which configures how the |relative| method finally displays its
results.
The initial configuration is
%
\begin{codeexample}[code only]
\pgfkeys{/pgf/number format/every relative/.style=std}
\end{codeexample}
Note that rounding is turned off when the resulting style is being
evaluated (since |relative| already rounded the number).
Although supported, I discourage from using |fixed zerofill| or
|sci zerofill| in this context -- it may lead to a suggestion of higher
precision than is actually used (because |fixed zerofill| might simply add
|.00| although there was a different information before |relative| rounded
the result).
\end{stylekey}
\begin{key}{/pgf/number format/relative style=\marg{options}}
The same as |every relative/.append style=|\marg{options}.
\end{key}
\begin{keylist}{/pgf/number format/fixed relative}
Configures |\pgfmathprintnumber| to format numbers in a similar way to the
|fixed| style, but the |precision| is interpreted relatively to the
number's exponent.
The motivation is to get the same rounding effect as for |sci|, but to
display the number in the |fixed| style:
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed relative,precision=3}
\pgfmathprintnumber{1000.0123}\hspace{1em}
\pgfmathprintnumber{100.0567}\hspace{1em}
\pgfmathprintnumber{0.000010003452}\hspace{1em}
\pgfmathprintnumber{0.010073452}\hspace{1em}
\pgfmathprintnumber{1.23567}\hspace{1em}
\pgfmathprintnumber{1003.75}\hspace{1em}
\pgfmathprintnumber{1006.75}\hspace{1em}
\end{codeexample}
The effect of |fixed relative| is that the number is rounded to
\emph{exactly} the first \meta{precision} non-zero digits, no matter how
many leading zeros the number might have.
Use |fixed relative| if you want |fixed| and if you know that only the
first $n$ digits are correct. Use |sci| if you need a scientific display
style and only the first $n$ digits are correct.
Note that |fixed relative| ignores the |fixed zerofill| flag.
See also the |relative*| key. Note that the |relative=|\marg{exponent} key
explicitly moves the period to some designated position before it attempts
to round the number. Afterwards, it ``rounds from the right'', i.e.\ it
rounds to that explicitly chosen digit position. In contrast to that,
|fixed relative| ``rounds from the left'': it takes the \emph{first}
non-zero digit, temporarily places the period after this digit, and rounds
that number. The rounding style |fixed| leaves the period where it is, and
rounds everything behind that digit. The |sci| style is similar to
|fixed relative|.
\end{keylist}
\begin{key}{/pgf/number format/int detect}
Configures |\pgfmathprintnumber| to detect integers automatically. If the
input number is an integer, no period is displayed at all. If not, the
scientific format is chosen.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,int detect,precision=2}
\pgfmathprintnumber{15}\hspace{1em}
\pgfmathprintnumber{20}\hspace{1em}
\pgfmathprintnumber{20.4}\hspace{1em}
\pgfmathprintnumber{0.01}\hspace{1em}
\pgfmathprintnumber{0}
\end{codeexample}
%
\end{key}
\begin{command}{\pgfmathifisint\marg{number constant}\marg{true code}\marg{false code}}
A command which does the same check as |int detect|, but it invokes
\meta{true code} if the \meta{number constant} actually is an integer and
the \meta{false code} if not.
As a side-effect, |\pgfretval| will contain the parsed number, either in
integer format or as parsed floating point number.
The argument \meta{number constant} will be parsed with
|\pgfmathfloatparsenumber|.
%
\begin{codeexample}[]
15 \pgfmathifisint{15}{is an int: \pgfretval.}{is no int}\hspace{1em}
15.5 \pgfmathifisint{15.5}{is an int: \pgfretval.}{is no int}
\end{codeexample}
%
\end{command}
\begin{key}{/pgf/number format/int trunc}
Truncates every number to integers (discards any digit after the period).
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,int trunc}
\pgfmathprintnumber{4.568}\hspace{1em}
\pgfmathprintnumber{5e-04}\hspace{1em}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{24415.98123}\hspace{1em}
\pgfmathprintnumber{123456.12345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/frac}
Displays numbers as fractionals.
%
\begin{codeexample}[width=3cm,preamble={\usetikzlibrary{fpu}}]
\pgfkeys{/pgf/number format/frac}
\pgfmathprintnumber{0.333333333333333}\hspace{1em}
\pgfmathprintnumber{0.5}\hspace{1em}
\pgfmathprintnumber{2.133333333333325e-01}\hspace{1em}
\pgfmathprintnumber{0.12}\hspace{1em}
\pgfmathprintnumber{2.666666666666646e-02}\hspace{1em}
\pgfmathprintnumber{-1.333333333333334e-02}\hspace{1em}
\pgfmathprintnumber{7.200000000000000e-01}\hspace{1em}
\pgfmathprintnumber{6.666666666666667e-02}\hspace{1em}
\pgfmathprintnumber{1.333333333333333e-01}\hspace{1em}
\pgfmathprintnumber{-1.333333333333333e-02}\hspace{1em}
\pgfmathprintnumber{3.3333333}\hspace{1em}
\pgfmathprintnumber{1.2345}\hspace{1em}
\pgfmathprintnumber{1}\hspace{1em}
\pgfmathprintnumber{-6}
\end{codeexample}
\begin{key}{/pgf/number format/frac TeX=\marg{\textbackslash macro} (initially \texttt{\textbackslash frac})}
Allows to use a different implementation for |\frac| inside of the
|frac| display type.
\end{key}
\begin{key}{/pgf/number format/frac denom=\meta{int} (initially empty)}
Allows to provide a custom denominator for |frac|.
%
\begin{codeexample}[width=3cm,preamble={\usetikzlibrary{fpu}}]
\pgfkeys{/pgf/number format/.cd,frac, frac denom=10}
\pgfmathprintnumber{0.1}\hspace{1em}
\pgfmathprintnumber{0.5}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{-0.6}\hspace{1em}
\pgfmathprintnumber{-1.4}\hspace{1em}
\end{codeexample}
\end{key}
%
\begin{key}{/pgf/number format/frac whole=\mchoice{true,false} (initially true)}
Configures whether complete integer parts shall be placed in front of
the fractional part. In this case, the fractional part will be less
then $1$. Use |frac whole=false| to avoid whole number parts.
%
\begin{codeexample}[width=3cm,preamble={\usetikzlibrary{fpu}}]
\pgfkeys{/pgf/number format/.cd,frac, frac whole=false}
\pgfmathprintnumber{20.1}\hspace{1em}
\pgfmathprintnumber{5.5}\hspace{1em}
\pgfmathprintnumber{1.2}\hspace{1em}
\pgfmathprintnumber{-5.6}\hspace{1em}
\pgfmathprintnumber{-1.4}\hspace{1em}
\end{codeexample}
\end{key}
%
\begin{key}{/pgf/number format/frac shift=\marg{integer} (initially 4)}
In case you experience problems because of stability problems, try
experimenting with a different |frac shift|. Higher shift values $k$
yield higher sensitivity to inaccurate data or inaccurate arithmetics.
Technically, the following happens. If $r < 1$ is the fractional part
of the mantissa, then a scale $i = 1/r \cdot 10^k$ is computed where
$k$ is the shift; fractional parts of $i$ are neglected. The value
$1/r$ is computed internally, its error is amplified.
If you still experience stability problems, use |\usepackage{fp}| in
your preamble. The |frac| style will then automatically employ the
higher absolute precision of |fp| for the computation of $1/r$.
\end{key}
\end{key}
\begin{key}{/pgf/number format/precision=\marg{number}}
Sets the desired rounding precision for any display operation. For
scientific format, this affects the mantissa.
\end{key}
\begin{key}{/pgf/number format/sci precision=\meta{number or empty} (initially empty)}
Sets the desired rounding precision only for |sci| styles.
Use |sci precision={}| to restore the initial configuration (which uses the
argument provided to |precision| for all number styles).
\end{key}
\begin{key}{/pgf/number format/read comma as period=\mchoice{true,false} (initially false)}
This is one of the few keys which allows to customize the number parser. If
this switch is turned on, a comma is read just as a period.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/read comma as period}
\pgfmathprintnumber{1234,56}
\end{codeexample}
%
This is typically undesired as it can cause side-effects with math parsing
instructions. However, it is supported to format input numbers or input
tables. Consider |use comma| to typeset the result with a comma as well.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
read comma as period,
use comma}
\pgfmathprintnumber{1234,56}
\end{codeexample}
%
\end{key}
\subsection{Changing display styles}%
\label{sec:number:styles}
You can change the way how numbers are displayed. For example, if you use the
`\texttt{fixed}' style, the input number is rounded to the desired precision
and the current fixed point display style is used to typeset the number. The
same is applied to any other format: first, rounding routines are used to get
the correct digits, afterwards a display style generates proper \TeX-code.
\begin{key}{/pgf/number format/set decimal separator=\marg{text}}
Assigns \marg{text} as decimal separator for any fixed point numbers
(including the mantissa in sci format).
Use |\pgfkeysgetvalue{/pgf/number format/set decimal separator}\value| to
get the current separator into |\value|.
\end{key}
\begin{stylekey}{/pgf/number format/dec sep=\marg{text}}
Just another name for |set decimal separator|.
\end{stylekey}
\begin{key}{/pgf/number format/set thousands separator=\marg{text}}
Assigns \marg{text} as thousands separator for any fixed point numbers
(including the mantissa in sci format).
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={}}
\pgfmathprintnumber{1234.56}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={.}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={,}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=2,
set thousands separator={{{,}}}}
\pgfmathprintnumber{1234567890}
\end{codeexample}
%
The last example employs commas and disables the default comma-spacing.
Use |\pgfkeysgetvalue{/pgf/number format/set thousands separator}\value| to
get the current separator into |\value|.
\end{key}
\begin{stylekey}{/pgf/number format/1000 sep=\marg{text}}
Just another name for |set thousands separator|.
\end{stylekey}
\begin{key}{/pgf/number format/1000 sep in fractionals=\marg{boolean} (initially false)}
Configures whether the fractional part should also be grouped into groups
of three digits.
The value |true| will active the |1000 sep| for both, integer and
fractional parts. The value |false| will active |1000 sep| only for the
integer part.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
precision=999,
set thousands separator={\,},
1000 sep in fractionals,
}
\pgfmathprintnumber{1234.1234567}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,fixed zerofill,
precision=9,
set thousands separator={\,},
1000 sep in fractionals,
}
\pgfmathprintnumber{1234.1234567}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/min exponent for 1000 sep=\marg{number} (initially 0)}
Defines the smallest exponent in scientific notation which is required to
draw thousand separators. The exponent is the number of digits minus one,
so $\meta{number}=4$ will use thousand separators starting with $1e4 =
10000$.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=0}
\pgfmathprintnumber{5000}; \pgfmathprintnumber{1000000}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=4}
\pgfmathprintnumber{1000}; \pgfmathprintnumber{5000}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
int detect,
1000 sep={\,},
min exponent for 1000 sep=4}
\pgfmathprintnumber{10000}; \pgfmathprintnumber{1000000}
\end{codeexample}
%
\noindent A value of |0| disables this feature (negative values are
ignored).
\end{key}
\begin{key}{/pgf/number format/use period}
A predefined style which installs periods ``\texttt{.}'' as decimal
separators and commas ``\texttt{,}'' as thousands separators. This style is
the default.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
\pgfmathprintnumber{12.3456}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period}
\pgfmathprintnumber{1234.56}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/use comma}
A predefined style which installs commas ``\texttt{,}'' as decimal
separators and periods ``\texttt{.}'' as thousands separators.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
\pgfmathprintnumber{12.3456}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma}
\pgfmathprintnumber{1234.56}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/skip 0.=\marg{boolean} (initially false)}
Configures whether numbers like $0.1$ shall be typeset as $.1$ or not.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,precision=2,
skip 0.}
\pgfmathprintnumber{0.56}
\end{codeexample}
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,
fixed,
fixed zerofill,precision=2,
skip 0.=false}
\pgfmathprintnumber{0.56}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/showpos=\marg{boolean} (initially false)}
Enables or disables the display of plus signs for non-negative numbers.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/showpos}
\pgfmathprintnumber{12.345}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/showpos=false}
\pgfmathprintnumber{12.345}
\end{codeexample}
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,showpos,sci}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{stylekey}{/pgf/number format/print sign=\marg{boolean}}
A style which is simply an alias for |showpos=|\marg{boolean}.
\end{stylekey}
\begin{key}{/pgf/number format/sci 10e}
Uses $m \cdot 10^e$ for any number displayed in scientific format.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci 10e}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/sci 10\textasciicircum e}
The same as `|sci 10e|'.
\end{key}
\begin{key}{/pgf/number format/sci e}
Uses the `$1e{+}0$' format which is generated by common scientific tools
for any number displayed in scientific format.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci e}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/sci E}
The same with an uppercase `\texttt{E}'.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci E}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/sci subscript}
Typesets the exponent as subscript for any number displayed in scientific
format. This style requires very little space.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci subscript}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/sci superscript}
Typesets the exponent as superscript for any number displayed in scientific
format. This style requires very little space.
%
\begin{codeexample}[]
\pgfkeys{/pgf/number format/.cd,sci,sci superscript}
\pgfmathprintnumber{12.345}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/number format/sci generic=\marg{keys}}
Allows to define an own number style for the scientific format. Here,
\meta{keys} can be one of the following choices (omit the long key prefix):
\begin{key}{/pgf/number format/sci generic/mantissa sep=\marg{text} (initially empty)}
Provides the separator between a mantissa and the exponent. It might be
|\cdot|, for example,
\end{key}
%
\begin{key}{/pgf/number format/sci generic/exponent=\marg{text} (initially empty)}
Provides text to format the exponent. The actual exponent is available
as argument |#1| (see below).
\end{key}
%
\begin{codeexample}[]
\pgfkeys{
/pgf/number format/.cd,
sci,
sci generic={mantissa sep=\times,exponent={10^{#1}}}}
\pgfmathprintnumber{12.345};
\pgfmathprintnumber{0.00012345}
\end{codeexample}
%
The \meta{keys} can depend on three parameters, namely on |#1| which is the
exponent, |#2| containing the flags entity of the floating point number and
|#3| is the (unprocessed and unformatted) mantissa.
Note that |sci generic| is \emph{not} suitable to modify the appearance of
fixed point numbers, nor can it be used to format the mantissa (which is
typeset like fixed point numbers). Use |dec sep|, |1000 sep| and
|print sign| to customize the mantissa.
\end{key}
\begin{key}{/pgf/number format/retain unit mantissa=\mchoice{true,false} (initially true)}
Allows to omit a unit mantissa.
%
\begin{codeexample}[]
\pgfkeys{
/pgf/number format/.cd,
sci, retain unit mantissa=false}
\pgfmathprintnumber{10.5};
\pgfmathprintnumber{10};
\pgfmathprintnumber{1010};
\pgfmathprintnumber[precision=1]{-1010};
\end{codeexample}
%
The feature is applied after rounding to the desired precision: if the
remaining mantissa is equal to~$1$, it will be omitted. It applies to all
styles involving the scientific format (including |std|).
\end{key}
\begin{key}{/pgf/number format/\protect\atmarktext dec sep mark=\marg{text}}
Will be placed right before the place where a decimal separator belongs to.
However, \marg{text} will be inserted even if there is no decimal
separator. It is intended as place-holder for auxiliary routines to find
alignment positions.
This key should never be used to change the decimal separator!
Use |dec sep| instead.
\end{key}
\begin{key}{/pgf/number format/\protect\atmarktext sci exponent mark=\marg{text}}
Will be placed right before exponents in scientific notation. It is
intended as place-holder for auxiliary routines to find alignment
positions.
This key should never be used to change the exponent!
\end{key}
\begin{key}{/pgf/number format/assume math mode=\marg{boolean} (default true)}
Set this to |true| if you don't want any checks for math mode. The initial
setting checks whether math mode is active using |\pgfutilensuremath| for
each final number.
Use |assume math mode=true| if you know that math mode is active. In that
case, the final number is typeset as-is, no further checking is performed.
\end{key}
\begin{stylekey}{/pgf/number format/verbatim}
A style which configures the number printer to produce verbatim text
output, i.e., it doesn't contain \TeX\ macros.
%
\begin{codeexample}[preamble={\usetikzlibrary{fpu}}]
\pgfkeys{
/pgf/fpu,
/pgf/number format/.cd,
sci,
verbatim}
\pgfmathprintnumber{12.345};
\pgfmathprintnumber{0.00012345};
\pgfmathparse{exp(15)}
\pgfmathprintnumber{\pgfmathresult}
\end{codeexample}
%
The style resets |1000 sep|, |dec sep|, |print sign|, |skip 0.| and sets
|assume math mode|. Furthermore, it installs a |sci generic| format for
verbatim output of scientific numbers.
However, it will still respect |precision|, |fixed zerofill|,
|sci zerofill| and the overall styles |fixed|, |sci|, |int detect| (and
their variants). It might be useful if you intend to write output files.
\end{stylekey}
%--------------------------------------------------
% \subsubsection{Defining own display styles}
% You can define own display styles, although this may require some insight into \TeX-programming. Here are two examples:
% \begin{enumerate}
% \item A new fixed point display style: The following code defines a new style named `\texttt{my own fixed point style}' which uses $1{\cdot}00$ instead of $1.00$.
% \begin{lstlisting}
% \def\myfixedpointstyleimpl#1.#2\relax{%
% #1{\cdot}#2%
% }%
% \def\myfixedpointstyle#1{%
% \pgfutilensuremath{%
% \ifpgfmathfloatroundhasperiod
% \expandafter\myfixedpointstyleimpl#1\relax
% \else
% #1%
% \fi
% }%
% }
% \pgfkeys{/my own fixed point style/.code={%
% \let\pgfmathprintnumber@fixed@style=\myfixedpointstyle}
% }%
% \end{lstlisting}
% You only need to overwrite the macro \lstinline!\pgfmathprintnumber@fixed@style!. This macro takes one argument (the result of any numerical computations). The \TeX-boolean \lstinline!\ifpgfmathfloatroundhasperiod! is true if and only if the input number contains a period.
%
% \item An example for a new scientific display style:
% \begin{lstlisting}
% % #1:
% % 0 == '0' (the number is +- 0.0),
% % 1 == '+',
% % 2 == '-',
% % 3 == 'not a number'
% % 4 == '+ infinity'
% % 5 == '- infinity'
% % #2: the mantissa
% % #3: the exponent
% \def\myscistyle#1#2e#3\relax{%
% ...
% }
% \pgfkeys{/my own sci style/.code={%
% \let\pgfmathfloatrounddisplaystyle=\myscistyle},
% }%
% \end{lstlisting}
% \end{enumerate}
%--------------------------------------------------