Current File : //usr/include/tbb/flow_graph.h |
/*
Copyright (c) 2005-2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_flow_graph_H
#define __TBB_flow_graph_H
#define __TBB_flow_graph_H_include_area
#include "internal/_warning_suppress_enable_notice.h"
#include "tbb_stddef.h"
#include "atomic.h"
#include "spin_mutex.h"
#include "null_mutex.h"
#include "spin_rw_mutex.h"
#include "null_rw_mutex.h"
#include "task.h"
#include "cache_aligned_allocator.h"
#include "tbb_exception.h"
#include "pipeline.h"
#include "internal/_template_helpers.h"
#include "internal/_aggregator_impl.h"
#include "tbb/internal/_allocator_traits.h"
#include "tbb_profiling.h"
#include "task_arena.h"
#if TBB_USE_THREADING_TOOLS && TBB_PREVIEW_FLOW_GRAPH_TRACE && ( __linux__ || __APPLE__ )
#if __INTEL_COMPILER
// Disabled warning "routine is both inline and noinline"
#pragma warning (push)
#pragma warning( disable: 2196 )
#endif
#define __TBB_NOINLINE_SYM __attribute__((noinline))
#else
#define __TBB_NOINLINE_SYM
#endif
#if __TBB_PREVIEW_ASYNC_MSG
#include <vector> // std::vector in internal::async_storage
#include <memory> // std::shared_ptr in async_msg
#endif
#if __TBB_PREVIEW_STREAMING_NODE
// For streaming_node
#include <array> // std::array
#include <unordered_map> // std::unordered_map
#include <type_traits> // std::decay, std::true_type, std::false_type
#endif // __TBB_PREVIEW_STREAMING_NODE
#if TBB_DEPRECATED_FLOW_ENQUEUE
#define FLOW_SPAWN(a) tbb::task::enqueue((a))
#else
#define FLOW_SPAWN(a) tbb::task::spawn((a))
#endif
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
#define __TBB_DEFAULT_NODE_ALLOCATOR(T) cache_aligned_allocator<T>
#else
#define __TBB_DEFAULT_NODE_ALLOCATOR(T) null_type
#endif
// use the VC10 or gcc version of tuple if it is available.
#if __TBB_CPP11_TUPLE_PRESENT
#include <tuple>
namespace tbb {
namespace flow {
using std::tuple;
using std::tuple_size;
using std::tuple_element;
using std::get;
}
}
#else
#include "compat/tuple"
#endif
#include<list>
#include<queue>
/** @file
\brief The graph related classes and functions
There are some applications that best express dependencies as messages
passed between nodes in a graph. These messages may contain data or
simply act as signals that a predecessors has completed. The graph
class and its associated node classes can be used to express such
applications.
*/
namespace tbb {
namespace flow {
//! An enumeration the provides the two most common concurrency levels: unlimited and serial
enum concurrency { unlimited = 0, serial = 1 };
namespace interface11 {
//! A generic null type
struct null_type {};
//! An empty class used for messages that mean "I'm done"
class continue_msg {};
//! Forward declaration section
template< typename T > class sender;
template< typename T > class receiver;
class continue_receiver;
template< typename T, typename U > class limiter_node; // needed for resetting decrementer
template< typename R, typename B > class run_and_put_task;
namespace internal {
template<typename T, typename M> class successor_cache;
template<typename T, typename M> class broadcast_cache;
template<typename T, typename M> class round_robin_cache;
template<typename T, typename M> class predecessor_cache;
template<typename T, typename M> class reservable_predecessor_cache;
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
namespace order {
struct following;
struct preceding;
}
template<typename Order, typename... Args> struct node_set;
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
// Holder of edges both for caches and for those nodes which do not have predecessor caches.
// C == receiver< ... > or sender< ... >, depending.
template<typename C>
class edge_container {
public:
typedef std::list<C *, tbb::tbb_allocator<C *> > edge_list_type;
void add_edge(C &s) {
built_edges.push_back(&s);
}
void delete_edge(C &s) {
for (typename edge_list_type::iterator i = built_edges.begin(); i != built_edges.end(); ++i) {
if (*i == &s) {
(void)built_edges.erase(i);
return; // only remove one predecessor per request
}
}
}
void copy_edges(edge_list_type &v) {
v = built_edges;
}
size_t edge_count() {
return (size_t)(built_edges.size());
}
void clear() {
built_edges.clear();
}
// methods remove the statement from all predecessors/successors liste in the edge
// container.
template< typename S > void sender_extract(S &s);
template< typename R > void receiver_extract(R &r);
private:
edge_list_type built_edges;
}; // class edge_container
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
} // namespace internal
} // namespace interfaceX
} // namespace flow
} // namespace tbb
//! The graph class
#include "internal/_flow_graph_impl.h"
namespace tbb {
namespace flow {
namespace interface11 {
// enqueue left task if necessary. Returns the non-enqueued task if there is one.
static inline tbb::task *combine_tasks(graph& g, tbb::task * left, tbb::task * right) {
// if no RHS task, don't change left.
if (right == NULL) return left;
// right != NULL
if (left == NULL) return right;
if (left == SUCCESSFULLY_ENQUEUED) return right;
// left contains a task
if (right != SUCCESSFULLY_ENQUEUED) {
// both are valid tasks
internal::spawn_in_graph_arena(g, *left);
return right;
}
return left;
}
#if __TBB_PREVIEW_ASYNC_MSG
template < typename T > class __TBB_DEPRECATED async_msg;
namespace internal {
template < typename T > class async_storage;
template< typename T, typename = void >
struct async_helpers {
typedef async_msg<T> async_type;
typedef T filtered_type;
static const bool is_async_type = false;
static const void* to_void_ptr(const T& t) {
return static_cast<const void*>(&t);
}
static void* to_void_ptr(T& t) {
return static_cast<void*>(&t);
}
static const T& from_void_ptr(const void* p) {
return *static_cast<const T*>(p);
}
static T& from_void_ptr(void* p) {
return *static_cast<T*>(p);
}
static task* try_put_task_wrapper_impl(receiver<T>* const this_recv, const void *p, bool is_async) {
if (is_async) {
// This (T) is NOT async and incoming 'A<X> t' IS async
// Get data from async_msg
const async_msg<filtered_type>& msg = async_helpers< async_msg<filtered_type> >::from_void_ptr(p);
task* const new_task = msg.my_storage->subscribe(*this_recv, this_recv->graph_reference());
// finalize() must be called after subscribe() because set() can be called in finalize()
// and 'this_recv' client must be subscribed by this moment
msg.finalize();
return new_task;
}
else {
// Incoming 't' is NOT async
return this_recv->try_put_task(from_void_ptr(p));
}
}
};
template< typename T >
struct async_helpers< T, typename std::enable_if< std::is_base_of<async_msg<typename T::async_msg_data_type>, T>::value >::type > {
typedef T async_type;
typedef typename T::async_msg_data_type filtered_type;
static const bool is_async_type = true;
// Receiver-classes use const interfaces
static const void* to_void_ptr(const T& t) {
return static_cast<const void*>(&static_cast<const async_msg<filtered_type>&>(t));
}
static void* to_void_ptr(T& t) {
return static_cast<void*>(&static_cast<async_msg<filtered_type>&>(t));
}
// Sender-classes use non-const interfaces
static const T& from_void_ptr(const void* p) {
return *static_cast<const T*>(static_cast<const async_msg<filtered_type>*>(p));
}
static T& from_void_ptr(void* p) {
return *static_cast<T*>(static_cast<async_msg<filtered_type>*>(p));
}
// Used in receiver<T> class
static task* try_put_task_wrapper_impl(receiver<T>* const this_recv, const void *p, bool is_async) {
if (is_async) {
// Both are async
return this_recv->try_put_task(from_void_ptr(p));
}
else {
// This (T) is async and incoming 'X t' is NOT async
// Create async_msg for X
const filtered_type& t = async_helpers<filtered_type>::from_void_ptr(p);
const T msg(t);
return this_recv->try_put_task(msg);
}
}
};
class untyped_receiver;
class untyped_sender {
template< typename, typename > friend class internal::predecessor_cache;
template< typename, typename > friend class internal::reservable_predecessor_cache;
public:
//! The successor type for this node
typedef untyped_receiver successor_type;
virtual ~untyped_sender() {}
// NOTE: Following part of PUBLIC section is copy-paste from original sender<T> class
// TODO: Prevent untyped successor registration
//! Add a new successor to this node
virtual bool register_successor( successor_type &r ) = 0;
//! Removes a successor from this node
virtual bool remove_successor( successor_type &r ) = 0;
//! Releases the reserved item
virtual bool try_release( ) { return false; }
//! Consumes the reserved item
virtual bool try_consume( ) { return false; }
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
//! interface to record edges for traversal & deletion
typedef internal::edge_container<successor_type> built_successors_type;
typedef built_successors_type::edge_list_type successor_list_type;
virtual built_successors_type &built_successors() = 0;
virtual void internal_add_built_successor( successor_type & ) = 0;
virtual void internal_delete_built_successor( successor_type & ) = 0;
virtual void copy_successors( successor_list_type &) = 0;
virtual size_t successor_count() = 0;
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
//! Request an item from the sender
template< typename X >
bool try_get( X &t ) {
return try_get_wrapper( internal::async_helpers<X>::to_void_ptr(t), internal::async_helpers<X>::is_async_type );
}
//! Reserves an item in the sender
template< typename X >
bool try_reserve( X &t ) {
return try_reserve_wrapper( internal::async_helpers<X>::to_void_ptr(t), internal::async_helpers<X>::is_async_type );
}
virtual bool try_get_wrapper( void* p, bool is_async ) = 0;
virtual bool try_reserve_wrapper( void* p, bool is_async ) = 0;
};
class untyped_receiver {
template< typename, typename > friend class run_and_put_task;
template< typename, typename > friend class internal::broadcast_cache;
template< typename, typename > friend class internal::round_robin_cache;
template< typename, typename > friend class internal::successor_cache;
#if __TBB_PREVIEW_OPENCL_NODE
template< typename, typename > friend class proxy_dependency_receiver;
#endif /* __TBB_PREVIEW_OPENCL_NODE */
public:
//! The predecessor type for this node
typedef untyped_sender predecessor_type;
//! Destructor
virtual ~untyped_receiver() {}
//! Put an item to the receiver
template<typename X>
bool try_put(const X& t) {
task *res = try_put_task(t);
if (!res) return false;
if (res != SUCCESSFULLY_ENQUEUED) internal::spawn_in_graph_arena(graph_reference(), *res);
return true;
}
// NOTE: Following part of PUBLIC section is copy-paste from original receiver<T> class
// TODO: Prevent untyped predecessor registration
//! Add a predecessor to the node
virtual bool register_predecessor( predecessor_type & ) { return false; }
//! Remove a predecessor from the node
virtual bool remove_predecessor( predecessor_type & ) { return false; }
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef internal::edge_container<predecessor_type> built_predecessors_type;
typedef built_predecessors_type::edge_list_type predecessor_list_type;
virtual built_predecessors_type &built_predecessors() = 0;
virtual void internal_add_built_predecessor( predecessor_type & ) = 0;
virtual void internal_delete_built_predecessor( predecessor_type & ) = 0;
virtual void copy_predecessors( predecessor_list_type & ) = 0;
virtual size_t predecessor_count() = 0;
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
template<typename X>
task *try_put_task(const X& t) {
return try_put_task_wrapper( internal::async_helpers<X>::to_void_ptr(t), internal::async_helpers<X>::is_async_type );
}
virtual task* try_put_task_wrapper( const void* p, bool is_async ) = 0;
virtual graph& graph_reference() const = 0;
// NOTE: Following part of PROTECTED and PRIVATE sections is copy-paste from original receiver<T> class
//! put receiver back in initial state
virtual void reset_receiver(reset_flags f = rf_reset_protocol) = 0;
virtual bool is_continue_receiver() { return false; }
};
} // namespace internal
//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender : public internal::untyped_sender {
public:
//! The output type of this sender
__TBB_DEPRECATED typedef T output_type;
__TBB_DEPRECATED typedef typename internal::async_helpers<T>::filtered_type filtered_type;
//! Request an item from the sender
virtual bool try_get( T & ) { return false; }
//! Reserves an item in the sender
virtual bool try_reserve( T & ) { return false; }
protected:
virtual bool try_get_wrapper( void* p, bool is_async ) __TBB_override {
// Both async OR both are NOT async
if ( internal::async_helpers<T>::is_async_type == is_async ) {
return try_get( internal::async_helpers<T>::from_void_ptr(p) );
}
// Else: this (T) is async OR incoming 't' is async
__TBB_ASSERT(false, "async_msg interface does not support 'pull' protocol in try_get()");
return false;
}
virtual bool try_reserve_wrapper( void* p, bool is_async ) __TBB_override {
// Both async OR both are NOT async
if ( internal::async_helpers<T>::is_async_type == is_async ) {
return try_reserve( internal::async_helpers<T>::from_void_ptr(p) );
}
// Else: this (T) is async OR incoming 't' is async
__TBB_ASSERT(false, "async_msg interface does not support 'pull' protocol in try_reserve()");
return false;
}
}; // class sender<T>
//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver : public internal::untyped_receiver {
template< typename > friend class internal::async_storage;
template< typename, typename > friend struct internal::async_helpers;
public:
//! The input type of this receiver
__TBB_DEPRECATED typedef T input_type;
__TBB_DEPRECATED typedef typename internal::async_helpers<T>::filtered_type filtered_type;
//! Put an item to the receiver
bool try_put( const typename internal::async_helpers<T>::filtered_type& t ) {
return internal::untyped_receiver::try_put(t);
}
bool try_put( const typename internal::async_helpers<T>::async_type& t ) {
return internal::untyped_receiver::try_put(t);
}
protected:
virtual task* try_put_task_wrapper( const void *p, bool is_async ) __TBB_override {
return internal::async_helpers<T>::try_put_task_wrapper_impl(this, p, is_async);
}
//! Put item to successor; return task to run the successor if possible.
virtual task *try_put_task(const T& t) = 0;
}; // class receiver<T>
#else // __TBB_PREVIEW_ASYNC_MSG
//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender {
public:
//! The output type of this sender
__TBB_DEPRECATED typedef T output_type;
//! The successor type for this node
__TBB_DEPRECATED typedef receiver<T> successor_type;
virtual ~sender() {}
// NOTE: Following part of PUBLIC section is partly copy-pasted in sender<T> under #if __TBB_PREVIEW_ASYNC_MSG
//! Add a new successor to this node
__TBB_DEPRECATED virtual bool register_successor( successor_type &r ) = 0;
//! Removes a successor from this node
__TBB_DEPRECATED virtual bool remove_successor( successor_type &r ) = 0;
//! Request an item from the sender
virtual bool try_get( T & ) { return false; }
//! Reserves an item in the sender
virtual bool try_reserve( T & ) { return false; }
//! Releases the reserved item
virtual bool try_release( ) { return false; }
//! Consumes the reserved item
virtual bool try_consume( ) { return false; }
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
//! interface to record edges for traversal & deletion
__TBB_DEPRECATED typedef typename internal::edge_container<successor_type> built_successors_type;
__TBB_DEPRECATED typedef typename built_successors_type::edge_list_type successor_list_type;
__TBB_DEPRECATED virtual built_successors_type &built_successors() = 0;
__TBB_DEPRECATED virtual void internal_add_built_successor( successor_type & ) = 0;
__TBB_DEPRECATED virtual void internal_delete_built_successor( successor_type & ) = 0;
__TBB_DEPRECATED virtual void copy_successors( successor_list_type &) = 0;
__TBB_DEPRECATED virtual size_t successor_count() = 0;
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
}; // class sender<T>
//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver {
public:
//! The input type of this receiver
__TBB_DEPRECATED typedef T input_type;
//! The predecessor type for this node
__TBB_DEPRECATED typedef sender<T> predecessor_type;
//! Destructor
virtual ~receiver() {}
//! Put an item to the receiver
bool try_put( const T& t ) {
task *res = try_put_task(t);
if (!res) return false;
if (res != SUCCESSFULLY_ENQUEUED) internal::spawn_in_graph_arena(graph_reference(), *res);
return true;
}
//! put item to successor; return task to run the successor if possible.
protected:
template< typename R, typename B > friend class run_and_put_task;
template< typename X, typename Y > friend class internal::broadcast_cache;
template< typename X, typename Y > friend class internal::round_robin_cache;
virtual task *try_put_task(const T& t) = 0;
virtual graph& graph_reference() const = 0;
public:
// NOTE: Following part of PUBLIC and PROTECTED sections is copy-pasted in receiver<T> under #if __TBB_PREVIEW_ASYNC_MSG
//! Add a predecessor to the node
__TBB_DEPRECATED virtual bool register_predecessor( predecessor_type & ) { return false; }
//! Remove a predecessor from the node
__TBB_DEPRECATED virtual bool remove_predecessor( predecessor_type & ) { return false; }
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
__TBB_DEPRECATED typedef typename internal::edge_container<predecessor_type> built_predecessors_type;
__TBB_DEPRECATED typedef typename built_predecessors_type::edge_list_type predecessor_list_type;
__TBB_DEPRECATED virtual built_predecessors_type &built_predecessors() = 0;
__TBB_DEPRECATED virtual void internal_add_built_predecessor( predecessor_type & ) = 0;
__TBB_DEPRECATED virtual void internal_delete_built_predecessor( predecessor_type & ) = 0;
__TBB_DEPRECATED virtual void copy_predecessors( predecessor_list_type & ) = 0;
__TBB_DEPRECATED virtual size_t predecessor_count() = 0;
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
//! put receiver back in initial state
virtual void reset_receiver(reset_flags f = rf_reset_protocol) = 0;
template<typename TT, typename M> friend class internal::successor_cache;
virtual bool is_continue_receiver() { return false; }
#if __TBB_PREVIEW_OPENCL_NODE
template< typename, typename > friend class proxy_dependency_receiver;
#endif /* __TBB_PREVIEW_OPENCL_NODE */
}; // class receiver<T>
#endif // __TBB_PREVIEW_ASYNC_MSG
//! Base class for receivers of completion messages
/** These receivers automatically reset, but cannot be explicitly waited on */
class continue_receiver : public receiver< continue_msg > {
public:
//! The input type
__TBB_DEPRECATED typedef continue_msg input_type;
//! The predecessor type for this node
__TBB_DEPRECATED typedef receiver<input_type>::predecessor_type predecessor_type;
//! Constructor
__TBB_DEPRECATED explicit continue_receiver(
__TBB_FLOW_GRAPH_PRIORITY_ARG1(int number_of_predecessors, node_priority_t priority)) {
my_predecessor_count = my_initial_predecessor_count = number_of_predecessors;
my_current_count = 0;
__TBB_FLOW_GRAPH_PRIORITY_EXPR( my_priority = priority; )
}
//! Copy constructor
__TBB_DEPRECATED continue_receiver( const continue_receiver& src ) : receiver<continue_msg>() {
my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count;
my_current_count = 0;
__TBB_FLOW_GRAPH_PRIORITY_EXPR( my_priority = src.my_priority; )
}
//! Increments the trigger threshold
__TBB_DEPRECATED bool register_predecessor( predecessor_type & ) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
++my_predecessor_count;
return true;
}
//! Decrements the trigger threshold
/** Does not check to see if the removal of the predecessor now makes the current count
exceed the new threshold. So removing a predecessor while the graph is active can cause
unexpected results. */
__TBB_DEPRECATED bool remove_predecessor( predecessor_type & ) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
--my_predecessor_count;
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
__TBB_DEPRECATED typedef internal::edge_container<predecessor_type> built_predecessors_type;
__TBB_DEPRECATED typedef built_predecessors_type::edge_list_type predecessor_list_type;
built_predecessors_type &built_predecessors() __TBB_override { return my_built_predecessors; }
__TBB_DEPRECATED void internal_add_built_predecessor( predecessor_type &s) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.add_edge( s );
}
__TBB_DEPRECATED void internal_delete_built_predecessor( predecessor_type &s) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.delete_edge(s);
}
__TBB_DEPRECATED void copy_predecessors( predecessor_list_type &v) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.copy_edges(v);
}
__TBB_DEPRECATED size_t predecessor_count() __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
return my_built_predecessors.edge_count();
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
// execute body is supposed to be too small to create a task for.
task *try_put_task( const input_type & ) __TBB_override {
{
spin_mutex::scoped_lock l(my_mutex);
if ( ++my_current_count < my_predecessor_count )
return SUCCESSFULLY_ENQUEUED;
else
my_current_count = 0;
}
task * res = execute();
return res? res : SUCCESSFULLY_ENQUEUED;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
// continue_receiver must contain its own built_predecessors because it does
// not have a node_cache.
built_predecessors_type my_built_predecessors;
#endif
spin_mutex my_mutex;
int my_predecessor_count;
int my_current_count;
int my_initial_predecessor_count;
__TBB_FLOW_GRAPH_PRIORITY_EXPR( node_priority_t my_priority; )
// the friend declaration in the base class did not eliminate the "protected class"
// error in gcc 4.1.2
template<typename U, typename V> friend class tbb::flow::interface11::limiter_node;
void reset_receiver( reset_flags f ) __TBB_override {
my_current_count = 0;
if (f & rf_clear_edges) {
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
my_built_predecessors.clear();
#endif
my_predecessor_count = my_initial_predecessor_count;
}
}
//! Does whatever should happen when the threshold is reached
/** This should be very fast or else spawn a task. This is
called while the sender is blocked in the try_put(). */
virtual task * execute() = 0;
template<typename TT, typename M> friend class internal::successor_cache;
bool is_continue_receiver() __TBB_override { return true; }
}; // class continue_receiver
} // interfaceX
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
template <typename K, typename T>
K key_from_message( const T &t ) {
return t.key();
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
using interface11::sender;
using interface11::receiver;
using interface11::continue_receiver;
} // flow
} // tbb
#include "internal/_flow_graph_trace_impl.h"
#include "internal/_tbb_hash_compare_impl.h"
namespace tbb {
namespace flow {
namespace interface11 {
#include "internal/_flow_graph_body_impl.h"
#include "internal/_flow_graph_cache_impl.h"
#include "internal/_flow_graph_types_impl.h"
#if __TBB_PREVIEW_ASYNC_MSG
#include "internal/_flow_graph_async_msg_impl.h"
#endif
using namespace internal::graph_policy_namespace;
template <typename C, typename N>
graph_iterator<C,N>::graph_iterator(C *g, bool begin) : my_graph(g), current_node(NULL)
{
if (begin) current_node = my_graph->my_nodes;
//else it is an end iterator by default
}
template <typename C, typename N>
typename graph_iterator<C,N>::reference graph_iterator<C,N>::operator*() const {
__TBB_ASSERT(current_node, "graph_iterator at end");
return *operator->();
}
template <typename C, typename N>
typename graph_iterator<C,N>::pointer graph_iterator<C,N>::operator->() const {
return current_node;
}
template <typename C, typename N>
void graph_iterator<C,N>::internal_forward() {
if (current_node) current_node = current_node->next;
}
} // namespace interfaceX
namespace interface10 {
//! Constructs a graph with isolated task_group_context
inline graph::graph() : my_nodes(NULL), my_nodes_last(NULL), my_task_arena(NULL) {
prepare_task_arena();
own_context = true;
cancelled = false;
caught_exception = false;
my_context = new task_group_context(tbb::internal::FLOW_TASKS);
my_root_task = (new (task::allocate_root(*my_context)) empty_task);
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph(this);
my_is_active = true;
}
inline graph::graph(task_group_context& use_this_context) :
my_context(&use_this_context), my_nodes(NULL), my_nodes_last(NULL), my_task_arena(NULL) {
prepare_task_arena();
own_context = false;
cancelled = false;
caught_exception = false;
my_root_task = (new (task::allocate_root(*my_context)) empty_task);
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph(this);
my_is_active = true;
}
inline graph::~graph() {
wait_for_all();
my_root_task->set_ref_count(0);
tbb::task::destroy(*my_root_task);
if (own_context) delete my_context;
delete my_task_arena;
}
inline void graph::reserve_wait() {
if (my_root_task) {
my_root_task->increment_ref_count();
tbb::internal::fgt_reserve_wait(this);
}
}
inline void graph::release_wait() {
if (my_root_task) {
tbb::internal::fgt_release_wait(this);
my_root_task->decrement_ref_count();
}
}
inline void graph::register_node(tbb::flow::interface11::graph_node *n) {
n->next = NULL;
{
spin_mutex::scoped_lock lock(nodelist_mutex);
n->prev = my_nodes_last;
if (my_nodes_last) my_nodes_last->next = n;
my_nodes_last = n;
if (!my_nodes) my_nodes = n;
}
}
inline void graph::remove_node(tbb::flow::interface11::graph_node *n) {
{
spin_mutex::scoped_lock lock(nodelist_mutex);
__TBB_ASSERT(my_nodes && my_nodes_last, "graph::remove_node: Error: no registered nodes");
if (n->prev) n->prev->next = n->next;
if (n->next) n->next->prev = n->prev;
if (my_nodes_last == n) my_nodes_last = n->prev;
if (my_nodes == n) my_nodes = n->next;
}
n->prev = n->next = NULL;
}
inline void graph::reset( tbb::flow::interface11::reset_flags f ) {
// reset context
tbb::flow::interface11::internal::deactivate_graph(*this);
if(my_context) my_context->reset();
cancelled = false;
caught_exception = false;
// reset all the nodes comprising the graph
for(iterator ii = begin(); ii != end(); ++ii) {
tbb::flow::interface11::graph_node *my_p = &(*ii);
my_p->reset_node(f);
}
// Reattach the arena. Might be useful to run the graph in a particular task_arena
// while not limiting graph lifetime to a single task_arena::execute() call.
prepare_task_arena( /*reinit=*/true );
tbb::flow::interface11::internal::activate_graph(*this);
// now spawn the tasks necessary to start the graph
for(task_list_type::iterator rti = my_reset_task_list.begin(); rti != my_reset_task_list.end(); ++rti) {
tbb::flow::interface11::internal::spawn_in_graph_arena(*this, *(*rti));
}
my_reset_task_list.clear();
}
inline graph::iterator graph::begin() { return iterator(this, true); }
inline graph::iterator graph::end() { return iterator(this, false); }
inline graph::const_iterator graph::begin() const { return const_iterator(this, true); }
inline graph::const_iterator graph::end() const { return const_iterator(this, false); }
inline graph::const_iterator graph::cbegin() const { return const_iterator(this, true); }
inline graph::const_iterator graph::cend() const { return const_iterator(this, false); }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
inline void graph::set_name(const char *name) {
tbb::internal::fgt_graph_desc(this, name);
}
#endif
} // namespace interface10
namespace interface11 {
inline graph_node::graph_node(graph& g) : my_graph(g) {
my_graph.register_node(this);
}
inline graph_node::~graph_node() {
my_graph.remove_node(this);
}
#include "internal/_flow_graph_node_impl.h"
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
using internal::node_set;
#endif
//! An executable node that acts as a source, i.e. it has no predecessors
template < typename Output >
class input_node : public graph_node, public sender< Output > {
public:
//! The type of the output message, which is complete
typedef Output output_type;
//! The type of successors of this node
typedef typename sender<output_type>::successor_type successor_type;
//Source node has no input type
typedef null_type input_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
//! Constructor for a node with a successor
template< typename Body >
__TBB_NOINLINE_SYM input_node( graph &g, Body body )
: graph_node(g), my_active(false),
my_body( new internal::input_body_leaf< output_type, Body>(body) ),
my_init_body( new internal::input_body_leaf< output_type, Body>(body) ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Successors>
input_node( const node_set<internal::order::preceding, Successors...>& successors, Body body )
: input_node(successors.graph_reference(), body) {
make_edges(*this, successors);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM input_node( const input_node& src ) :
graph_node(src.my_graph), sender<Output>(),
my_active(false),
my_body( src.my_init_body->clone() ), my_init_body(src.my_init_body->clone() ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body(CODEPTR(), tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! The destructor
~input_node() { delete my_body; delete my_init_body; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Add a new successor to this node
bool register_successor( successor_type &r ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.register_successor(r);
if ( my_active )
spawn_put();
return true;
}
//! Removes a successor from this node
bool remove_successor( successor_type &r ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.remove_successor(r);
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
void internal_add_built_successor( successor_type &r) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_add_built_successor(r);
}
void internal_delete_built_successor( successor_type &r) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_delete_built_successor(r);
}
size_t successor_count() __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
return my_successors.successor_count();
}
void copy_successors(successor_list_type &v) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
my_successors.copy_successors(v);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
//! Request an item from the node
bool try_get( output_type &v ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved )
return false;
if ( my_has_cached_item ) {
v = my_cached_item;
my_has_cached_item = false;
return true;
}
// we've been asked to provide an item, but we have none. enqueue a task to
// provide one.
if ( my_active )
spawn_put();
return false;
}
//! Reserves an item.
bool try_reserve( output_type &v ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Release a reserved item.
/** true = item has been released and so remains in sender, dest must request or reserve future items */
bool try_release( ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
my_reserved = false;
if(!my_successors.empty())
spawn_put();
return true;
}
//! Consumes a reserved item
bool try_consume( ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
my_reserved = false;
my_has_cached_item = false;
if ( !my_successors.empty() ) {
spawn_put();
}
return true;
}
//! Activates a node that was created in the inactive state
void activate() {
spin_mutex::scoped_lock lock(my_mutex);
my_active = true;
if (!my_successors.empty())
spawn_put();
}
template<typename Body>
Body copy_function_object() {
internal::input_body<output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::input_body_leaf<output_type, Body> & >(body_ref).get_body();
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract( ) __TBB_override {
my_successors.built_successors().sender_extract(*this); // removes "my_owner" == this from each successor
my_active = false;
my_reserved = false;
if(my_has_cached_item) my_has_cached_item = false;
}
#endif
protected:
//! resets the input_node to its initial state
void reset_node( reset_flags f) __TBB_override {
my_active = false;
my_reserved = false;
my_has_cached_item = false;
if(f & rf_clear_edges) my_successors.clear();
if(f & rf_reset_bodies) {
internal::input_body<output_type> *tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
}
private:
spin_mutex my_mutex;
bool my_active;
internal::input_body<output_type> *my_body;
internal::input_body<output_type> *my_init_body;
internal::broadcast_cache< output_type > my_successors;
bool my_reserved;
bool my_has_cached_item;
output_type my_cached_item;
// used by apply_body_bypass, can invoke body of node.
bool try_reserve_apply_body(output_type &v) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( !my_has_cached_item ) {
tbb::internal::fgt_begin_body( my_body );
#if TBB_DEPRECATED_INPUT_NODE_BODY
bool r = (*my_body)(my_cached_item);
if (r) {
my_has_cached_item = true;
}
#else
flow_control control;
my_cached_item = (*my_body)(control);
my_has_cached_item = !control.is_pipeline_stopped;
#endif
tbb::internal::fgt_end_body( my_body );
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
task* create_put_task() {
return ( new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal:: source_task_bypass < input_node< output_type > >( *this ) );
}
//! Spawns a task that applies the body
void spawn_put( ) {
if(internal::is_graph_active(this->my_graph)) {
internal::spawn_in_graph_arena(this->my_graph, *create_put_task());
}
}
friend class internal::source_task_bypass< input_node< output_type > >;
//! Applies the body. Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it.
task * apply_body_bypass( ) {
output_type v;
if ( !try_reserve_apply_body(v) )
return NULL;
task *last_task = my_successors.try_put_task(v);
if ( last_task )
try_consume();
else
try_release();
return last_task;
}
}; // class input_node
#if TBB_USE_SOURCE_NODE_AS_ALIAS
template < typename Output >
class source_node : public input_node <Output> {
public:
//! Constructor for a node with a successor
template< typename Body >
__TBB_NOINLINE_SYM source_node( graph &g, Body body )
: input_node<Output>(g, body)
{
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Successors>
source_node( const node_set<internal::order::preceding, Successors...>& successors, Body body )
: input_node<Output>(successors, body) {
}
#endif
};
#else // TBB_USE_SOURCE_NODE_AS_ALIAS
//! An executable node that acts as a source, i.e. it has no predecessors
template < typename Output > class
__TBB_DEPRECATED_MSG("TBB Warning: tbb::flow::source_node is deprecated, use tbb::flow::input_node." )
source_node : public graph_node, public sender< Output > {
public:
//! The type of the output message, which is complete
typedef Output output_type;
//! The type of successors of this node
typedef typename sender<output_type>::successor_type successor_type;
//Source node has no input type
typedef null_type input_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
//! Constructor for a node with a successor
template< typename Body >
__TBB_NOINLINE_SYM source_node( graph &g, Body body, bool is_active = true )
: graph_node(g), my_active(is_active), init_my_active(is_active),
my_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_init_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Successors>
source_node( const node_set<internal::order::preceding, Successors...>& successors, Body body, bool is_active = true )
: source_node(successors.graph_reference(), body, is_active) {
make_edges(*this, successors);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM source_node( const source_node& src ) :
graph_node(src.my_graph), sender<Output>(),
my_active(src.init_my_active),
init_my_active(src.init_my_active), my_body( src.my_init_body->clone() ), my_init_body(src.my_init_body->clone() ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body(CODEPTR(), tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! The destructor
~source_node() { delete my_body; delete my_init_body; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Add a new successor to this node
bool register_successor( successor_type &r ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.register_successor(r);
if ( my_active )
spawn_put();
return true;
}
//! Removes a successor from this node
bool remove_successor( successor_type &r ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.remove_successor(r);
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
void internal_add_built_successor( successor_type &r) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_add_built_successor(r);
}
void internal_delete_built_successor( successor_type &r) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_delete_built_successor(r);
}
size_t successor_count() __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
return my_successors.successor_count();
}
void copy_successors(successor_list_type &v) __TBB_override {
spin_mutex::scoped_lock l(my_mutex);
my_successors.copy_successors(v);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
//! Request an item from the node
bool try_get( output_type &v ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved )
return false;
if ( my_has_cached_item ) {
v = my_cached_item;
my_has_cached_item = false;
return true;
}
// we've been asked to provide an item, but we have none. enqueue a task to
// provide one.
spawn_put();
return false;
}
//! Reserves an item.
bool try_reserve( output_type &v ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Release a reserved item.
/** true = item has been released and so remains in sender, dest must request or reserve future items */
bool try_release( ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
my_reserved = false;
if(!my_successors.empty())
spawn_put();
return true;
}
//! Consumes a reserved item
bool try_consume( ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
my_reserved = false;
my_has_cached_item = false;
if ( !my_successors.empty() ) {
spawn_put();
}
return true;
}
//! Activates a node that was created in the inactive state
void activate() {
spin_mutex::scoped_lock lock(my_mutex);
my_active = true;
if (!my_successors.empty())
spawn_put();
}
template<typename Body>
Body copy_function_object() {
internal::source_body<output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::source_body_leaf<output_type, Body> & >(body_ref).get_body();
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract( ) __TBB_override {
my_successors.built_successors().sender_extract(*this); // removes "my_owner" == this from each successor
my_active = init_my_active;
my_reserved = false;
if(my_has_cached_item) my_has_cached_item = false;
}
#endif
protected:
//! resets the source_node to its initial state
void reset_node( reset_flags f) __TBB_override {
my_active = init_my_active;
my_reserved =false;
if(my_has_cached_item) {
my_has_cached_item = false;
}
if(f & rf_clear_edges) my_successors.clear();
if(f & rf_reset_bodies) {
internal::source_body<output_type> *tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
if(my_active)
internal::add_task_to_graph_reset_list(this->my_graph, create_put_task());
}
private:
spin_mutex my_mutex;
bool my_active;
bool init_my_active;
internal::source_body<output_type> *my_body;
internal::source_body<output_type> *my_init_body;
internal::broadcast_cache< output_type > my_successors;
bool my_reserved;
bool my_has_cached_item;
output_type my_cached_item;
// used by apply_body_bypass, can invoke body of node.
bool try_reserve_apply_body(output_type &v) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( !my_has_cached_item ) {
tbb::internal::fgt_begin_body( my_body );
bool r = (*my_body)(my_cached_item);
tbb::internal::fgt_end_body( my_body );
if (r) {
my_has_cached_item = true;
}
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
// when resetting, and if the source_node was created with my_active == true, then
// when we reset the node we must store a task to run the node, and spawn it only
// after the reset is complete and is_active() is again true. This is why we don't
// test for is_active() here.
task* create_put_task() {
return ( new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal:: source_task_bypass < source_node< output_type > >( *this ) );
}
//! Spawns a task that applies the body
void spawn_put( ) {
if(internal::is_graph_active(this->my_graph)) {
internal::spawn_in_graph_arena(this->my_graph, *create_put_task());
}
}
friend class internal::source_task_bypass< source_node< output_type > >;
//! Applies the body. Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it.
task * apply_body_bypass( ) {
output_type v;
if ( !try_reserve_apply_body(v) )
return NULL;
task *last_task = my_successors.try_put_task(v);
if ( last_task )
try_consume();
else
try_release();
return last_task;
}
}; // class source_node
#endif // TBB_USE_SOURCE_NODE_AS_ALIAS
//! Implements a function node that supports Input -> Output
template<typename Input, typename Output = continue_msg, typename Policy = queueing,
typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(Input)>
class function_node
: public graph_node
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
, public internal::function_input< Input, Output, Policy, Allocator >
#else
, public internal::function_input< Input, Output, Policy, cache_aligned_allocator<Input> >
#endif
, public internal::function_output<Output> {
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
typedef Allocator internals_allocator;
#else
typedef cache_aligned_allocator<Input> internals_allocator;
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
public:
typedef Input input_type;
typedef Output output_type;
typedef internal::function_input<input_type,output_type,Policy,internals_allocator> input_impl_type;
typedef internal::function_input_queue<input_type, internals_allocator> input_queue_type;
typedef internal::function_output<output_type> fOutput_type;
typedef typename input_impl_type::predecessor_type predecessor_type;
typedef typename fOutput_type::successor_type successor_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename input_impl_type::predecessor_list_type predecessor_list_type;
typedef typename fOutput_type::successor_list_type successor_list_type;
#endif
using input_impl_type::my_predecessors;
//! Constructor
// input_queue_type is allocated here, but destroyed in the function_input_base.
// TODO: pass the graph_buffer_policy to the function_input_base so it can all
// be done in one place. This would be an interface-breaking change.
template< typename Body >
__TBB_NOINLINE_SYM function_node( graph &g, size_t concurrency,
#if __TBB_CPP11_PRESENT
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority ))
#else
__TBB_FLOW_GRAPH_PRIORITY_ARG1( Body body, node_priority_t priority = tbb::flow::internal::no_priority ))
#endif
: graph_node(g), input_impl_type(g, concurrency, __TBB_FLOW_GRAPH_PRIORITY_ARG1(body, priority)),
fOutput_type(g) {
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_FUNCTION_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
template <typename Body>
function_node( graph& g, size_t concurrency, Body body, node_priority_t priority )
: function_node(g, concurrency, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Args>
function_node( const node_set<Args...>& nodes, size_t concurrency, Body body,
__TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy p = Policy(), node_priority_t priority = tbb::flow::internal::no_priority ))
: function_node(nodes.graph_reference(), concurrency, body, __TBB_FLOW_GRAPH_PRIORITY_ARG1(p, priority)) {
make_edges_in_order(nodes, *this);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
template <typename Body, typename... Args>
function_node( const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t priority )
: function_node(nodes, concurrency, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Copy constructor
__TBB_NOINLINE_SYM function_node( const function_node& src ) :
graph_node(src.my_graph),
input_impl_type(src),
fOutput_type(src.my_graph) {
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_FUNCTION_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract( ) __TBB_override {
my_predecessors.built_predecessors().receiver_extract(*this);
successors().built_successors().sender_extract(*this);
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using input_impl_type::try_put_task;
internal::broadcast_cache<output_type> &successors () __TBB_override { return fOutput_type::my_successors; }
void reset_node(reset_flags f) __TBB_override {
input_impl_type::reset_function_input(f);
// TODO: use clear() instead.
if(f & rf_clear_edges) {
successors().clear();
my_predecessors.clear();
}
__TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "function_node successors not empty");
__TBB_ASSERT(this->my_predecessors.empty(), "function_node predecessors not empty");
}
}; // class function_node
//! implements a function node that supports Input -> (set of outputs)
// Output is a tuple of output types.
template<typename Input, typename Output, typename Policy = queueing,
typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(Input)>
class multifunction_node :
public graph_node,
public internal::multifunction_input
<
Input,
typename internal::wrap_tuple_elements<
tbb::flow::tuple_size<Output>::value, // #elements in tuple
internal::multifunction_output, // wrap this around each element
Output // the tuple providing the types
>::type,
Policy,
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
Allocator
#else
cache_aligned_allocator<Input>
#endif
> {
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
typedef Allocator internals_allocator;
#else
typedef cache_aligned_allocator<Input> internals_allocator;
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
protected:
static const int N = tbb::flow::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef null_type output_type;
typedef typename internal::wrap_tuple_elements<N,internal::multifunction_output, Output>::type output_ports_type;
typedef internal::multifunction_input<
input_type, output_ports_type, Policy, internals_allocator> input_impl_type;
typedef internal::function_input_queue<input_type, internals_allocator> input_queue_type;
private:
using input_impl_type::my_predecessors;
public:
template<typename Body>
__TBB_NOINLINE_SYM multifunction_node(
graph &g, size_t concurrency,
#if __TBB_CPP11_PRESENT
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority )
#else
__TBB_FLOW_GRAPH_PRIORITY_ARG1(Body body, node_priority_t priority = tbb::flow::internal::no_priority)
#endif
) : graph_node(g), input_impl_type(g, concurrency, __TBB_FLOW_GRAPH_PRIORITY_ARG1(body, priority)) {
tbb::internal::fgt_multioutput_node_with_body<N>(
CODEPTR(), tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body
);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
template <typename Body>
__TBB_NOINLINE_SYM multifunction_node(graph& g, size_t concurrency, Body body, node_priority_t priority)
: multifunction_node(g, concurrency, body, Policy(), priority) {}
#endif // TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Args>
__TBB_NOINLINE_SYM multifunction_node(const node_set<Args...>& nodes, size_t concurrency, Body body,
__TBB_FLOW_GRAPH_PRIORITY_ARG1(Policy p = Policy(), node_priority_t priority = tbb::flow::internal::no_priority))
: multifunction_node(nodes.graph_reference(), concurrency, body, __TBB_FLOW_GRAPH_PRIORITY_ARG1(p, priority)) {
make_edges_in_order(nodes, *this);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
template <typename Body, typename... Args>
__TBB_NOINLINE_SYM multifunction_node(const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t priority)
: multifunction_node(nodes, concurrency, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
__TBB_NOINLINE_SYM multifunction_node( const multifunction_node &other) :
graph_node(other.my_graph), input_impl_type(other) {
tbb::internal::fgt_multioutput_node_with_body<N>( CODEPTR(), tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract( ) __TBB_override {
my_predecessors.built_predecessors().receiver_extract(*this);
input_impl_type::extract();
}
#endif
// all the guts are in multifunction_input...
protected:
void reset_node(reset_flags f) __TBB_override { input_impl_type::reset(f); }
}; // multifunction_node
//! split_node: accepts a tuple as input, forwards each element of the tuple to its
// successors. The node has unlimited concurrency, so it does not reject inputs.
template<typename TupleType, typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(TupleType)>
class split_node : public graph_node, public receiver<TupleType> {
static const int N = tbb::flow::tuple_size<TupleType>::value;
typedef receiver<TupleType> base_type;
public:
typedef TupleType input_type;
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
typedef Allocator allocator_type;
#else
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename base_type::predecessor_type predecessor_type;
typedef typename base_type::predecessor_list_type predecessor_list_type;
typedef internal::predecessor_cache<input_type, null_mutex > predecessor_cache_type;
typedef typename predecessor_cache_type::built_predecessors_type built_predecessors_type;
#endif
typedef typename internal::wrap_tuple_elements<
N, // #elements in tuple
internal::multifunction_output, // wrap this around each element
TupleType // the tuple providing the types
>::type output_ports_type;
__TBB_NOINLINE_SYM explicit split_node(graph &g)
: graph_node(g),
my_output_ports(internal::init_output_ports<output_ports_type>::call(g, my_output_ports))
{
tbb::internal::fgt_multioutput_node<N>(CODEPTR(), tbb::internal::FLOW_SPLIT_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports());
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
__TBB_NOINLINE_SYM split_node(const node_set<Args...>& nodes) : split_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
__TBB_NOINLINE_SYM split_node(const split_node& other)
: graph_node(other.my_graph), base_type(other),
my_output_ports(internal::init_output_ports<output_ports_type>::call(other.my_graph, my_output_ports))
{
tbb::internal::fgt_multioutput_node<N>(CODEPTR(), tbb::internal::FLOW_SPLIT_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports());
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
output_ports_type &output_ports() { return my_output_ports; }
protected:
task *try_put_task(const TupleType& t) __TBB_override {
// Sending split messages in parallel is not justified, as overheads would prevail.
// Also, we do not have successors here. So we just tell the task returned here is successful.
return internal::emit_element<N>::emit_this(this->my_graph, t, output_ports());
}
void reset_node(reset_flags f) __TBB_override {
if (f & rf_clear_edges)
internal::clear_element<N>::clear_this(my_output_ports);
__TBB_ASSERT(!(f & rf_clear_edges) || internal::clear_element<N>::this_empty(my_output_ports), "split_node reset failed");
}
void reset_receiver(reset_flags /*f*/) __TBB_override {}
graph& graph_reference() const __TBB_override {
return my_graph;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
private: //! split_node doesn't use this "predecessors" functionality; so, we have "dummies" here;
void extract() __TBB_override {}
//! Adds to list of predecessors added by make_edge
void internal_add_built_predecessor(predecessor_type&) __TBB_override {}
//! removes from to list of predecessors (used by remove_edge)
void internal_delete_built_predecessor(predecessor_type&) __TBB_override {}
size_t predecessor_count() __TBB_override { return 0; }
void copy_predecessors(predecessor_list_type&) __TBB_override {}
built_predecessors_type &built_predecessors() __TBB_override { return my_predessors; }
//! dummy member
built_predecessors_type my_predessors;
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
private:
output_ports_type my_output_ports;
};
//! Implements an executable node that supports continue_msg -> Output
template <typename Output, typename Policy = internal::Policy<void> >
class continue_node : public graph_node, public internal::continue_input<Output, Policy>,
public internal::function_output<Output> {
public:
typedef continue_msg input_type;
typedef Output output_type;
typedef internal::continue_input<Output, Policy> input_impl_type;
typedef internal::function_output<output_type> fOutput_type;
typedef typename input_impl_type::predecessor_type predecessor_type;
typedef typename fOutput_type::successor_type successor_type;
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
__TBB_NOINLINE_SYM continue_node(
graph &g,
#if __TBB_CPP11_PRESENT
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority )
#else
__TBB_FLOW_GRAPH_PRIORITY_ARG1( Body body, node_priority_t priority = tbb::flow::internal::no_priority )
#endif
) : graph_node(g), input_impl_type( g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(body, priority) ),
fOutput_type(g) {
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
template <typename Body>
continue_node( graph& g, Body body, node_priority_t priority )
: continue_node(g, body, Policy(), priority) {}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Args>
continue_node( const node_set<Args...>& nodes, Body body,
__TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy p = Policy(), node_priority_t priority = tbb::flow::internal::no_priority))
: continue_node(nodes.graph_reference(), body, __TBB_FLOW_GRAPH_PRIORITY_ARG1(p, priority) ) {
make_edges_in_order(nodes, *this);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
template <typename Body, typename... Args>
continue_node( const node_set<Args...>& nodes, Body body, node_priority_t priority)
: continue_node(nodes, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
__TBB_NOINLINE_SYM continue_node(
graph &g, int number_of_predecessors,
#if __TBB_CPP11_PRESENT
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority )
#else
__TBB_FLOW_GRAPH_PRIORITY_ARG1( Body body, node_priority_t priority = tbb::flow::internal::no_priority )
#endif
) : graph_node(g)
, input_impl_type(g, number_of_predecessors, __TBB_FLOW_GRAPH_PRIORITY_ARG1(body, priority)),
fOutput_type(g) {
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
template <typename Body>
continue_node( graph& g, int number_of_predecessors, Body body, node_priority_t priority)
: continue_node(g, number_of_predecessors, body, Policy(), priority) {}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Args>
continue_node( const node_set<Args...>& nodes, int number_of_predecessors,
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1( Policy p = Policy(), node_priority_t priority = tbb::flow::internal::no_priority ))
: continue_node(nodes.graph_reference(), number_of_predecessors, body, __TBB_FLOW_GRAPH_PRIORITY_ARG1(p, priority)) {
make_edges_in_order(nodes, *this);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
template <typename Body, typename... Args>
continue_node( const node_set<Args...>& nodes, int number_of_predecessors,
Body body, node_priority_t priority )
: continue_node(nodes, number_of_predecessors, body, Policy(), priority) {}
#endif
#endif
//! Copy constructor
__TBB_NOINLINE_SYM continue_node( const continue_node& src ) :
graph_node(src.my_graph), input_impl_type(src),
internal::function_output<Output>(src.my_graph) {
tbb::internal::fgt_node_with_body( CODEPTR(), tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract() __TBB_override {
input_impl_type::my_built_predecessors.receiver_extract(*this);
successors().built_successors().sender_extract(*this);
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using input_impl_type::try_put_task;
internal::broadcast_cache<output_type> &successors () __TBB_override { return fOutput_type::my_successors; }
void reset_node(reset_flags f) __TBB_override {
input_impl_type::reset_receiver(f);
if(f & rf_clear_edges)successors().clear();
__TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "continue_node not reset");
}
}; // continue_node
//! Forwards messages of type T to all successors
template <typename T>
class broadcast_node : public graph_node, public receiver<T>, public sender<T> {
public:
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
private:
internal::broadcast_cache<input_type> my_successors;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
internal::edge_container<predecessor_type> my_built_predecessors;
spin_mutex pred_mutex; // serialize accesses on edge_container
#endif
public:
__TBB_NOINLINE_SYM explicit broadcast_node(graph& g) : graph_node(g) {
my_successors.set_owner( this );
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
broadcast_node(const node_set<Args...>& nodes) : broadcast_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM broadcast_node( const broadcast_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>()
{
my_successors.set_owner( this );
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Adds a successor
bool register_successor( successor_type &r ) __TBB_override {
my_successors.register_successor( r );
return true;
}
//! Removes s as a successor
bool remove_successor( successor_type &r ) __TBB_override {
my_successors.remove_successor( r );
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename sender<T>::built_successors_type built_successors_type;
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
void internal_add_built_successor(successor_type &r) __TBB_override {
my_successors.internal_add_built_successor(r);
}
void internal_delete_built_successor(successor_type &r) __TBB_override {
my_successors.internal_delete_built_successor(r);
}
size_t successor_count() __TBB_override {
return my_successors.successor_count();
}
void copy_successors(successor_list_type &v) __TBB_override {
my_successors.copy_successors(v);
}
typedef typename receiver<T>::built_predecessors_type built_predecessors_type;
built_predecessors_type &built_predecessors() __TBB_override { return my_built_predecessors; }
void internal_add_built_predecessor( predecessor_type &p) __TBB_override {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.add_edge(p);
}
void internal_delete_built_predecessor( predecessor_type &p) __TBB_override {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.delete_edge(p);
}
size_t predecessor_count() __TBB_override {
spin_mutex::scoped_lock l(pred_mutex);
return my_built_predecessors.edge_count();
}
void copy_predecessors(predecessor_list_type &v) __TBB_override {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.copy_edges(v);
}
void extract() __TBB_override {
my_built_predecessors.receiver_extract(*this);
my_successors.built_successors().sender_extract(*this);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! build a task to run the successor if possible. Default is old behavior.
task *try_put_task(const T& t) __TBB_override {
task *new_task = my_successors.try_put_task(t);
if (!new_task) new_task = SUCCESSFULLY_ENQUEUED;
return new_task;
}
graph& graph_reference() const __TBB_override {
return my_graph;
}
void reset_receiver(reset_flags /*f*/) __TBB_override {}
void reset_node(reset_flags f) __TBB_override {
if (f&rf_clear_edges) {
my_successors.clear();
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
my_built_predecessors.clear();
#endif
}
__TBB_ASSERT(!(f & rf_clear_edges) || my_successors.empty(), "Error resetting broadcast_node");
}
}; // broadcast_node
//! Forwards messages in arbitrary order
template <typename T, typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(T) >
class buffer_node
: public graph_node
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
, public internal::reservable_item_buffer< T, Allocator >
#else
, public internal::reservable_item_buffer< T, cache_aligned_allocator<T> >
#endif
, public receiver<T>, public sender<T> {
#if TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
typedef Allocator internals_allocator;
#else
typedef cache_aligned_allocator<T> internals_allocator;
#endif
public:
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
typedef buffer_node<T, Allocator> class_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
#if !TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
protected:
typedef size_t size_type;
internal::round_robin_cache< T, null_rw_mutex > my_successors;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
internal::edge_container<predecessor_type> my_built_predecessors;
#endif
friend class internal::forward_task_bypass< class_type >;
enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd_task
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
, add_blt_succ, del_blt_succ,
add_blt_pred, del_blt_pred,
blt_succ_cnt, blt_pred_cnt,
blt_succ_cpy, blt_pred_cpy // create vector copies of preds and succs
#endif
};
// implements the aggregator_operation concept
class buffer_operation : public internal::aggregated_operation< buffer_operation > {
public:
char type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
task * ltask;
union {
input_type *elem;
successor_type *r;
predecessor_type *p;
size_t cnt_val;
successor_list_type *svec;
predecessor_list_type *pvec;
};
#else
T *elem;
task * ltask;
successor_type *r;
#endif
buffer_operation(const T& e, op_type t) : type(char(t))
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
, ltask(NULL), elem(const_cast<T*>(&e))
#else
, elem(const_cast<T*>(&e)) , ltask(NULL)
#endif
{}
buffer_operation(op_type t) : type(char(t)), ltask(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<class_type, buffer_operation> handler_type;
friend class internal::aggregating_functor<class_type, buffer_operation>;
internal::aggregator< handler_type, buffer_operation> my_aggregator;
virtual void handle_operations(buffer_operation *op_list) {
handle_operations_impl(op_list, this);
}
template<typename derived_type>
void handle_operations_impl(buffer_operation *op_list, derived_type* derived) {
__TBB_ASSERT(static_cast<class_type*>(derived) == this, "'this' is not a base class for derived");
buffer_operation *tmp = NULL;
bool try_forwarding = false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break;
case rem_succ: internal_rem_succ(tmp); break;
case req_item: internal_pop(tmp); break;
case res_item: internal_reserve(tmp); break;
case rel_res: internal_release(tmp); try_forwarding = true; break;
case con_res: internal_consume(tmp); try_forwarding = true; break;
case put_item: try_forwarding = internal_push(tmp); break;
case try_fwd_task: internal_forward_task(tmp); break;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
// edge recording
case add_blt_succ: internal_add_built_succ(tmp); break;
case del_blt_succ: internal_del_built_succ(tmp); break;
case add_blt_pred: internal_add_built_pred(tmp); break;
case del_blt_pred: internal_del_built_pred(tmp); break;
case blt_succ_cnt: internal_succ_cnt(tmp); break;
case blt_pred_cnt: internal_pred_cnt(tmp); break;
case blt_succ_cpy: internal_copy_succs(tmp); break;
case blt_pred_cpy: internal_copy_preds(tmp); break;
#endif
}
}
derived->order();
if (try_forwarding && !forwarder_busy) {
if(internal::is_graph_active(this->my_graph)) {
forwarder_busy = true;
task *new_task = new(task::allocate_additional_child_of(*(this->my_graph.root_task()))) internal::
forward_task_bypass<class_type>(*this);
// tmp should point to the last item handled by the aggregator. This is the operation
// the handling thread enqueued. So modifying that record will be okay.
// workaround for icc bug
tbb::task *z = tmp->ltask;
graph &g = this->my_graph;
tmp->ltask = combine_tasks(g, z, new_task); // in case the op generated a task
}
}
} // handle_operations
inline task *grab_forwarding_task( buffer_operation &op_data) {
return op_data.ltask;
}
inline bool enqueue_forwarding_task(buffer_operation &op_data) {
task *ft = grab_forwarding_task(op_data);
if(ft) {
internal::spawn_in_graph_arena(graph_reference(), *ft);
return true;
}
return false;
}
//! This is executed by an enqueued task, the "forwarder"
virtual task *forward_task() {
buffer_operation op_data(try_fwd_task);
task *last_task = NULL;
do {
op_data.status = internal::WAIT;
op_data.ltask = NULL;
my_aggregator.execute(&op_data);
// workaround for icc bug
tbb::task *xtask = op_data.ltask;
graph& g = this->my_graph;
last_task = combine_tasks(g, last_task, xtask);
} while (op_data.status ==internal::SUCCEEDED);
return last_task;
}
//! Register successor
virtual void internal_reg_succ(buffer_operation *op) {
my_successors.register_successor(*(op->r));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
//! Remove successor
virtual void internal_rem_succ(buffer_operation *op) {
my_successors.remove_successor(*(op->r));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename sender<T>::built_successors_type built_successors_type;
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
virtual void internal_add_built_succ(buffer_operation *op) {
my_successors.internal_add_built_successor(*(op->r));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_del_built_succ(buffer_operation *op) {
my_successors.internal_delete_built_successor(*(op->r));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
typedef typename receiver<T>::built_predecessors_type built_predecessors_type;
built_predecessors_type &built_predecessors() __TBB_override { return my_built_predecessors; }
virtual void internal_add_built_pred(buffer_operation *op) {
my_built_predecessors.add_edge(*(op->p));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_del_built_pred(buffer_operation *op) {
my_built_predecessors.delete_edge(*(op->p));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_succ_cnt(buffer_operation *op) {
op->cnt_val = my_successors.successor_count();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_pred_cnt(buffer_operation *op) {
op->cnt_val = my_built_predecessors.edge_count();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_copy_succs(buffer_operation *op) {
my_successors.copy_successors(*(op->svec));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_copy_preds(buffer_operation *op) {
my_built_predecessors.copy_edges(*(op->pvec));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
private:
void order() {}
bool is_item_valid() {
return this->my_item_valid(this->my_tail - 1);
}
void try_put_and_add_task(task*& last_task) {
task *new_task = my_successors.try_put_task(this->back());
if (new_task) {
// workaround for icc bug
graph& g = this->my_graph;
last_task = combine_tasks(g, last_task, new_task);
this->destroy_back();
}
}
protected:
//! Tries to forward valid items to successors
virtual void internal_forward_task(buffer_operation *op) {
internal_forward_task_impl(op, this);
}
template<typename derived_type>
void internal_forward_task_impl(buffer_operation *op, derived_type* derived) {
__TBB_ASSERT(static_cast<class_type*>(derived) == this, "'this' is not a base class for derived");
if (this->my_reserved || !derived->is_item_valid()) {
__TBB_store_with_release(op->status, internal::FAILED);
this->forwarder_busy = false;
return;
}
// Try forwarding, giving each successor a chance
task * last_task = NULL;
size_type counter = my_successors.size();
for (; counter > 0 && derived->is_item_valid(); --counter)
derived->try_put_and_add_task(last_task);
op->ltask = last_task; // return task
if (last_task && !counter) {
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, internal::FAILED);
forwarder_busy = false;
}
}
virtual bool internal_push(buffer_operation *op) {
this->push_back(*(op->elem));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
return true;
}
virtual void internal_pop(buffer_operation *op) {
if(this->pop_back(*(op->elem))) {
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, internal::FAILED);
}
}
virtual void internal_reserve(buffer_operation *op) {
if(this->reserve_front(*(op->elem))) {
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, internal::FAILED);
}
}
virtual void internal_consume(buffer_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
virtual void internal_release(buffer_operation *op) {
this->release_front();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
public:
//! Constructor
__TBB_NOINLINE_SYM explicit buffer_node( graph &g )
: graph_node(g), internal::reservable_item_buffer<T, internals_allocator>(), receiver<T>(),
sender<T>(), forwarder_busy(false)
{
my_successors.set_owner(this);
my_aggregator.initialize_handler(handler_type(this));
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
buffer_node(const node_set<Args...>& nodes) : buffer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM buffer_node( const buffer_node& src )
: graph_node(src.my_graph), internal::reservable_item_buffer<T, internals_allocator>(),
receiver<T>(), sender<T>(), forwarder_busy(false)
{
my_successors.set_owner(this);
my_aggregator.initialize_handler(handler_type(this));
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//
// message sender implementation
//
//! Adds a new successor.
/** Adds successor r to the list of successors; may forward tasks. */
bool register_successor( successor_type &r ) __TBB_override {
buffer_operation op_data(reg_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void internal_add_built_successor( successor_type &r) __TBB_override {
buffer_operation op_data(add_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
void internal_delete_built_successor( successor_type &r) __TBB_override {
buffer_operation op_data(del_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
void internal_add_built_predecessor( predecessor_type &p) __TBB_override {
buffer_operation op_data(add_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
void internal_delete_built_predecessor( predecessor_type &p) __TBB_override {
buffer_operation op_data(del_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
size_t predecessor_count() __TBB_override {
buffer_operation op_data(blt_pred_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
size_t successor_count() __TBB_override {
buffer_operation op_data(blt_succ_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
void copy_predecessors( predecessor_list_type &v ) __TBB_override {
buffer_operation op_data(blt_pred_cpy);
op_data.pvec = &v;
my_aggregator.execute(&op_data);
}
void copy_successors( successor_list_type &v ) __TBB_override {
buffer_operation op_data(blt_succ_cpy);
op_data.svec = &v;
my_aggregator.execute(&op_data);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
//! Removes a successor.
/** Removes successor r from the list of successors.
It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */
bool remove_successor( successor_type &r ) __TBB_override {
r.remove_predecessor(*this);
buffer_operation op_data(rem_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
// even though this operation does not cause a forward, if we are the handler, and
// a forward is scheduled, we may be the first to reach this point after the aggregator,
// and so should check for the task.
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Request an item from the buffer_node
/** true = v contains the returned item<BR>
false = no item has been returned */
bool try_get( T &v ) __TBB_override {
buffer_operation op_data(req_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==internal::SUCCEEDED);
}
//! Reserves an item.
/** false = no item can be reserved<BR>
true = an item is reserved */
bool try_reserve( T &v ) __TBB_override {
buffer_operation op_data(res_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==internal::SUCCEEDED);
}
//! Release a reserved item.
/** true = item has been released and so remains in sender */
bool try_release() __TBB_override {
buffer_operation op_data(rel_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Consumes a reserved item.
/** true = item is removed from sender and reservation removed */
bool try_consume() __TBB_override {
buffer_operation op_data(con_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! receive an item, return a task *if possible
task *try_put_task(const T &t) __TBB_override {
buffer_operation op_data(t, put_item);
my_aggregator.execute(&op_data);
task *ft = grab_forwarding_task(op_data);
// sequencer_nodes can return failure (if an item has been previously inserted)
// We have to spawn the returned task if our own operation fails.
if(ft && op_data.status ==internal::FAILED) {
// we haven't succeeded queueing the item, but for some reason the
// call returned a task (if another request resulted in a successful
// forward this could happen.) Queue the task and reset the pointer.
internal::spawn_in_graph_arena(graph_reference(), *ft); ft = NULL;
}
else if(!ft && op_data.status ==internal::SUCCEEDED) {
ft = SUCCESSFULLY_ENQUEUED;
}
return ft;
}
graph& graph_reference() const __TBB_override {
return my_graph;
}
void reset_receiver(reset_flags /*f*/) __TBB_override { }
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
public:
void extract() __TBB_override {
my_built_predecessors.receiver_extract(*this);
my_successors.built_successors().sender_extract(*this);
}
#endif
protected:
void reset_node( reset_flags f) __TBB_override {
internal::reservable_item_buffer<T, internals_allocator>::reset();
// TODO: just clear structures
if (f&rf_clear_edges) {
my_successors.clear();
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
my_built_predecessors.clear();
#endif
}
forwarder_busy = false;
}
}; // buffer_node
//! Forwards messages in FIFO order
template <typename T, typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(T) >
class queue_node : public buffer_node<T, Allocator> {
#if !TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
protected:
typedef buffer_node<T, Allocator> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::buffer_operation queue_operation;
typedef queue_node class_type;
private:
template<typename, typename> friend class buffer_node;
bool is_item_valid() {
return this->my_item_valid(this->my_head);
}
void try_put_and_add_task(task*& last_task) {
task *new_task = this->my_successors.try_put_task(this->front());
if (new_task) {
// workaround for icc bug
graph& graph_ref = this->graph_reference();
last_task = combine_tasks(graph_ref, last_task, new_task);
this->destroy_front();
}
}
protected:
void internal_forward_task(queue_operation *op) __TBB_override {
this->internal_forward_task_impl(op, this);
}
void internal_pop(queue_operation *op) __TBB_override {
if ( this->my_reserved || !this->my_item_valid(this->my_head)){
__TBB_store_with_release(op->status, internal::FAILED);
}
else {
this->pop_front(*(op->elem));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
}
void internal_reserve(queue_operation *op) __TBB_override {
if (this->my_reserved || !this->my_item_valid(this->my_head)) {
__TBB_store_with_release(op->status, internal::FAILED);
}
else {
this->reserve_front(*(op->elem));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
}
void internal_consume(queue_operation *op) __TBB_override {
this->consume_front();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
}
public:
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
//! Constructor
__TBB_NOINLINE_SYM explicit queue_node( graph &g ) : base_type(g) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
queue_node( const node_set<Args...>& nodes) : queue_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM queue_node( const queue_node& src) : base_type(src) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
void reset_node( reset_flags f) __TBB_override {
base_type::reset_node(f);
}
}; // queue_node
//! Forwards messages in sequence order
template< typename T, typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(T) >
class sequencer_node : public queue_node<T, Allocator> {
internal::function_body< T, size_t > *my_sequencer;
// my_sequencer should be a benign function and must be callable
// from a parallel context. Does this mean it needn't be reset?
public:
#if !TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will be removed. "
"Specify TBB_DEPRECATED_FLOW_NODE_ALLOCATOR to temporary enable the deprecated interface."
);
#endif
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
//! Constructor
template< typename Sequencer >
__TBB_NOINLINE_SYM sequencer_node( graph &g, const Sequencer& s ) : queue_node<T, Allocator>(g),
my_sequencer(new internal::function_body_leaf< T, size_t, Sequencer>(s) ) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Sequencer, typename... Args>
sequencer_node( const node_set<Args...>& nodes, const Sequencer& s)
: sequencer_node(nodes.graph_reference(), s) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM sequencer_node( const sequencer_node& src ) : queue_node<T, Allocator>(src),
my_sequencer( src.my_sequencer->clone() ) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Destructor
~sequencer_node() { delete my_sequencer; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
typedef typename buffer_node<T, Allocator>::size_type size_type;
typedef typename buffer_node<T, Allocator>::buffer_operation sequencer_operation;
private:
bool internal_push(sequencer_operation *op) __TBB_override {
size_type tag = (*my_sequencer)(*(op->elem));
#if !TBB_DEPRECATED_SEQUENCER_DUPLICATES
if (tag < this->my_head) {
// have already emitted a message with this tag
__TBB_store_with_release(op->status, internal::FAILED);
return false;
}
#endif
// cannot modify this->my_tail now; the buffer would be inconsistent.
size_t new_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail;
if (this->size(new_tail) > this->capacity()) {
this->grow_my_array(this->size(new_tail));
}
this->my_tail = new_tail;
const internal::op_stat res = this->place_item(tag, *(op->elem)) ? internal::SUCCEEDED : internal::FAILED;
__TBB_store_with_release(op->status, res);
return res ==internal::SUCCEEDED;
}
}; // sequencer_node
//! Forwards messages in priority order
template<typename T, typename Compare = std::less<T>, typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(T)>
class priority_queue_node : public buffer_node<T, Allocator> {
public:
#if !TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will removed in the future. "
"To temporary enable the deprecated interface specify TBB_ENABLE_DEPRECATED_NODE_ALLOCATOR."
);
#endif
typedef T input_type;
typedef T output_type;
typedef buffer_node<T,Allocator> base_type;
typedef priority_queue_node class_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
//! Constructor
__TBB_NOINLINE_SYM explicit priority_queue_node( graph &g, const Compare& comp = Compare() )
: buffer_node<T, Allocator>(g), compare(comp), mark(0) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
priority_queue_node(const node_set<Args...>& nodes, const Compare& comp = Compare())
: priority_queue_node(nodes.graph_reference(), comp) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor
__TBB_NOINLINE_SYM priority_queue_node( const priority_queue_node &src )
: buffer_node<T, Allocator>(src), mark(0)
{
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
void reset_node( reset_flags f) __TBB_override {
mark = 0;
base_type::reset_node(f);
}
typedef typename buffer_node<T, Allocator>::size_type size_type;
typedef typename buffer_node<T, Allocator>::item_type item_type;
typedef typename buffer_node<T, Allocator>::buffer_operation prio_operation;
//! Tries to forward valid items to successors
void internal_forward_task(prio_operation *op) __TBB_override {
this->internal_forward_task_impl(op, this);
}
void handle_operations(prio_operation *op_list) __TBB_override {
this->handle_operations_impl(op_list, this);
}
bool internal_push(prio_operation *op) __TBB_override {
prio_push(*(op->elem));
__TBB_store_with_release(op->status, internal::SUCCEEDED);
return true;
}
void internal_pop(prio_operation *op) __TBB_override {
// if empty or already reserved, don't pop
if ( this->my_reserved == true || this->my_tail == 0 ) {
__TBB_store_with_release(op->status, internal::FAILED);
return;
}
*(op->elem) = prio();
__TBB_store_with_release(op->status, internal::SUCCEEDED);
prio_pop();
}
// pops the highest-priority item, saves copy
void internal_reserve(prio_operation *op) __TBB_override {
if (this->my_reserved == true || this->my_tail == 0) {
__TBB_store_with_release(op->status, internal::FAILED);
return;
}
this->my_reserved = true;
*(op->elem) = prio();
reserved_item = *(op->elem);
__TBB_store_with_release(op->status, internal::SUCCEEDED);
prio_pop();
}
void internal_consume(prio_operation *op) __TBB_override {
__TBB_store_with_release(op->status, internal::SUCCEEDED);
this->my_reserved = false;
reserved_item = input_type();
}
void internal_release(prio_operation *op) __TBB_override {
__TBB_store_with_release(op->status, internal::SUCCEEDED);
prio_push(reserved_item);
this->my_reserved = false;
reserved_item = input_type();
}
private:
template<typename, typename> friend class buffer_node;
void order() {
if (mark < this->my_tail) heapify();
__TBB_ASSERT(mark == this->my_tail, "mark unequal after heapify");
}
bool is_item_valid() {
return this->my_tail > 0;
}
void try_put_and_add_task(task*& last_task) {
task * new_task = this->my_successors.try_put_task(this->prio());
if (new_task) {
// workaround for icc bug
graph& graph_ref = this->graph_reference();
last_task = combine_tasks(graph_ref, last_task, new_task);
prio_pop();
}
}
private:
Compare compare;
size_type mark;
input_type reserved_item;
// in case a reheap has not been done after a push, check if the mark item is higher than the 0'th item
bool prio_use_tail() {
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds before test");
return mark < this->my_tail && compare(this->get_my_item(0), this->get_my_item(this->my_tail - 1));
}
// prio_push: checks that the item will fit, expand array if necessary, put at end
void prio_push(const T &src) {
if ( this->my_tail >= this->my_array_size )
this->grow_my_array( this->my_tail + 1 );
(void) this->place_item(this->my_tail, src);
++(this->my_tail);
__TBB_ASSERT(mark < this->my_tail, "mark outside bounds after push");
}
// prio_pop: deletes highest priority item from the array, and if it is item
// 0, move last item to 0 and reheap. If end of array, just destroy and decrement tail
// and mark. Assumes the array has already been tested for emptiness; no failure.
void prio_pop() {
if (prio_use_tail()) {
// there are newly pushed elements; last one higher than top
// copy the data
this->destroy_item(this->my_tail-1);
--(this->my_tail);
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
return;
}
this->destroy_item(0);
if(this->my_tail > 1) {
// push the last element down heap
__TBB_ASSERT(this->my_item_valid(this->my_tail - 1), NULL);
this->move_item(0,this->my_tail - 1);
}
--(this->my_tail);
if(mark > this->my_tail) --mark;
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
}
const T& prio() {
return this->get_my_item(prio_use_tail() ? this->my_tail-1 : 0);
}
// turn array into heap
void heapify() {
if(this->my_tail == 0) {
mark = 0;
return;
}
if (!mark) mark = 1;
for (; mark<this->my_tail; ++mark) { // for each unheaped element
size_type cur_pos = mark;
input_type to_place;
this->fetch_item(mark,to_place);
do { // push to_place up the heap
size_type parent = (cur_pos-1)>>1;
if (!compare(this->get_my_item(parent), to_place))
break;
this->move_item(cur_pos, parent);
cur_pos = parent;
} while( cur_pos );
(void) this->place_item(cur_pos, to_place);
}
}
// otherwise heapified array with new root element; rearrange to heap
void reheap() {
size_type cur_pos=0, child=1;
while (child < mark) {
size_type target = child;
if (child+1<mark &&
compare(this->get_my_item(child),
this->get_my_item(child+1)))
++target;
// target now has the higher priority child
if (compare(this->get_my_item(target),
this->get_my_item(cur_pos)))
break;
// swap
this->swap_items(cur_pos, target);
cur_pos = target;
child = (cur_pos<<1)+1;
}
}
}; // priority_queue_node
} // interfaceX
namespace interface11 {
//! Forwards messages only if the threshold has not been reached
/** This node forwards items until its threshold is reached.
It contains no buffering. If the downstream node rejects, the
message is dropped. */
template< typename T, typename DecrementType=continue_msg >
class limiter_node : public graph_node, public receiver< T >, public sender< T > {
public:
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename receiver<input_type>::built_predecessors_type built_predecessors_type;
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
//TODO: There is a lack of predefined types for its controlling "decrementer" port. It should be fixed later.
private:
size_t my_threshold;
size_t my_count; //number of successful puts
size_t my_tries; //number of active put attempts
internal::reservable_predecessor_cache< T, spin_mutex > my_predecessors;
spin_mutex my_mutex;
internal::broadcast_cache< T > my_successors;
__TBB_DEPRECATED_LIMITER_EXPR( int init_decrement_predecessors; )
friend class internal::forward_task_bypass< limiter_node<T,DecrementType> >;
// Let decrementer call decrement_counter()
friend class internal::decrementer< limiter_node<T,DecrementType>, DecrementType >;
bool check_conditions() { // always called under lock
return ( my_count + my_tries < my_threshold && !my_predecessors.empty() && !my_successors.empty() );
}
// only returns a valid task pointer or NULL, never SUCCESSFULLY_ENQUEUED
task *forward_task() {
input_type v;
task *rval = NULL;
bool reserved = false;
{
spin_mutex::scoped_lock lock(my_mutex);
if ( check_conditions() )
++my_tries;
else
return NULL;
}
//SUCCESS
// if we can reserve and can put, we consume the reservation
// we increment the count and decrement the tries
if ( (my_predecessors.try_reserve(v)) == true ){
reserved=true;
if ( (rval = my_successors.try_put_task(v)) != NULL ){
{
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
my_predecessors.try_consume();
if ( check_conditions() ) {
if ( internal::is_graph_active(this->my_graph) ) {
task *rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T, DecrementType> >( *this );
internal::spawn_in_graph_arena(graph_reference(), *rtask);
}
}
}
return rval;
}
}
//FAILURE
//if we can't reserve, we decrement the tries
//if we can reserve but can't put, we decrement the tries and release the reservation
{
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
if (reserved) my_predecessors.try_release();
if ( check_conditions() ) {
if ( internal::is_graph_active(this->my_graph) ) {
task *rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T, DecrementType> >( *this );
__TBB_ASSERT(!rval, "Have two tasks to handle");
return rtask;
}
}
return rval;
}
}
void forward() {
__TBB_ASSERT(false, "Should never be called");
return;
}
task* decrement_counter( long long delta ) {
{
spin_mutex::scoped_lock lock(my_mutex);
if( delta > 0 && size_t(delta) > my_count )
my_count = 0;
else if( delta < 0 && size_t(delta) > my_threshold - my_count )
my_count = my_threshold;
else
my_count -= size_t(delta); // absolute value of delta is sufficiently small
}
return forward_task();
}
void initialize() {
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
tbb::internal::fgt_node(
CODEPTR(), tbb::internal::FLOW_LIMITER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<receiver<DecrementType> *>(&decrement),
static_cast<sender<output_type> *>(this)
);
}
public:
//! The internal receiver< DecrementType > that decrements the count
internal::decrementer< limiter_node<T, DecrementType>, DecrementType > decrement;
#if TBB_DEPRECATED_LIMITER_NODE_CONSTRUCTOR
__TBB_STATIC_ASSERT( (tbb::internal::is_same_type<DecrementType, continue_msg>::value),
"Deprecated interface of the limiter node can be used only in conjunction "
"with continue_msg as the type of DecrementType template parameter." );
#endif // Check for incompatible interface
//! Constructor
limiter_node(graph &g,
__TBB_DEPRECATED_LIMITER_ARG2(size_t threshold, int num_decrement_predecessors=0))
: graph_node(g), my_threshold(threshold), my_count(0),
__TBB_DEPRECATED_LIMITER_ARG4(
my_tries(0), decrement(),
init_decrement_predecessors(num_decrement_predecessors),
decrement(num_decrement_predecessors)) {
initialize();
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
limiter_node(const node_set<Args...>& nodes, size_t threshold)
: limiter_node(nodes.graph_reference(), threshold) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor
limiter_node( const limiter_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(),
my_threshold(src.my_threshold), my_count(0),
__TBB_DEPRECATED_LIMITER_ARG4(
my_tries(0), decrement(),
init_decrement_predecessors(src.init_decrement_predecessors),
decrement(src.init_decrement_predecessors)) {
initialize();
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Replace the current successor with this new successor
bool register_successor( successor_type &r ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
bool was_empty = my_successors.empty();
my_successors.register_successor(r);
//spawn a forward task if this is the only successor
if ( was_empty && !my_predecessors.empty() && my_count + my_tries < my_threshold ) {
if ( internal::is_graph_active(this->my_graph) ) {
task* task = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass < limiter_node<T, DecrementType> >( *this );
internal::spawn_in_graph_arena(graph_reference(), *task);
}
}
return true;
}
//! Removes a successor from this node
/** r.remove_predecessor(*this) is also called. */
bool remove_successor( successor_type &r ) __TBB_override {
r.remove_predecessor(*this);
my_successors.remove_successor(r);
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
built_predecessors_type &built_predecessors() __TBB_override { return my_predecessors.built_predecessors(); }
void internal_add_built_successor(successor_type &src) __TBB_override {
my_successors.internal_add_built_successor(src);
}
void internal_delete_built_successor(successor_type &src) __TBB_override {
my_successors.internal_delete_built_successor(src);
}
size_t successor_count() __TBB_override { return my_successors.successor_count(); }
void copy_successors(successor_list_type &v) __TBB_override {
my_successors.copy_successors(v);
}
void internal_add_built_predecessor(predecessor_type &src) __TBB_override {
my_predecessors.internal_add_built_predecessor(src);
}
void internal_delete_built_predecessor(predecessor_type &src) __TBB_override {
my_predecessors.internal_delete_built_predecessor(src);
}
size_t predecessor_count() __TBB_override { return my_predecessors.predecessor_count(); }
void copy_predecessors(predecessor_list_type &v) __TBB_override {
my_predecessors.copy_predecessors(v);
}
void extract() __TBB_override {
my_count = 0;
my_successors.built_successors().sender_extract(*this);
my_predecessors.built_predecessors().receiver_extract(*this);
decrement.built_predecessors().receiver_extract(decrement);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
//! Adds src to the list of cached predecessors.
bool register_predecessor( predecessor_type &src ) __TBB_override {
spin_mutex::scoped_lock lock(my_mutex);
my_predecessors.add( src );
if ( my_count + my_tries < my_threshold && !my_successors.empty() && internal::is_graph_active(this->my_graph) ) {
task* task = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass < limiter_node<T, DecrementType> >( *this );
internal::spawn_in_graph_arena(graph_reference(), *task);
}
return true;
}
//! Removes src from the list of cached predecessors.
bool remove_predecessor( predecessor_type &src ) __TBB_override {
my_predecessors.remove( src );
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! Puts an item to this receiver
task *try_put_task( const T &t ) __TBB_override {
{
spin_mutex::scoped_lock lock(my_mutex);
if ( my_count + my_tries >= my_threshold )
return NULL;
else
++my_tries;
}
task * rtask = my_successors.try_put_task(t);
if ( !rtask ) { // try_put_task failed.
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
if (check_conditions() && internal::is_graph_active(this->my_graph)) {
rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T, DecrementType> >( *this );
}
}
else {
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
}
return rtask;
}
graph& graph_reference() const __TBB_override { return my_graph; }
void reset_receiver(reset_flags /*f*/) __TBB_override {
__TBB_ASSERT(false,NULL); // should never be called
}
void reset_node( reset_flags f) __TBB_override {
my_count = 0;
if(f & rf_clear_edges) {
my_predecessors.clear();
my_successors.clear();
}
else
{
my_predecessors.reset( );
}
decrement.reset_receiver(f);
}
}; // limiter_node
#include "internal/_flow_graph_join_impl.h"
using internal::reserving_port;
using internal::queueing_port;
using internal::key_matching_port;
using internal::input_port;
using internal::tag_value;
template<typename OutputTuple, typename JP=queueing> class join_node;
template<typename OutputTuple>
class join_node<OutputTuple,reserving>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, reserving_port, OutputTuple, reserving> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, reserving_port, OutputTuple, reserving> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
__TBB_NOINLINE_SYM explicit join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
__TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, reserving = reserving()) : join_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
__TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename OutputTuple>
class join_node<OutputTuple,queueing>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, queueing_port, OutputTuple, queueing> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, queueing_port, OutputTuple, queueing> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
__TBB_NOINLINE_SYM explicit join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
__TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, queueing = queueing()) : join_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
__TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// template for key_matching join_node
// tag_matching join_node is a specialization of key_matching, and is source-compatible.
template<typename OutputTuple, typename K, typename KHash>
class join_node<OutputTuple, key_matching<K, KHash> > : public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value,
key_matching_port, OutputTuple, key_matching<K,KHash> > {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, key_matching_port, OutputTuple, key_matching<K,KHash> > unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
join_node(graph &g) : unfolded_type(g) {}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
join_node(const node_set<Args...>& nodes, key_matching<K, KHash> = key_matching<K, KHash>())
: join_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename __TBB_B0, typename __TBB_B1>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1) : unfolded_type(g, b0, b1) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2) : unfolded_type(g, b0, b1, b2) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3) : unfolded_type(g, b0, b1, b2, b3) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4) :
unfolded_type(g, b0, b1, b2, b3, b4) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_VARIADIC_MAX >= 6
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5) :
unfolded_type(g, b0, b1, b2, b3, b4, b5) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 7
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6) :
unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 8
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 9
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 10
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8, typename __TBB_B9>
__TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8, __TBB_B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args, typename... Bodies>
__TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, Bodies... bodies)
: join_node(nodes.graph_reference(), bodies...) {
make_edges_in_order(nodes, *this);
}
#endif
__TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// indexer node
#include "internal/_flow_graph_indexer_impl.h"
// TODO: Implement interface with variadic template or tuple
template<typename T0, typename T1=null_type, typename T2=null_type, typename T3=null_type,
typename T4=null_type, typename T5=null_type, typename T6=null_type,
typename T7=null_type, typename T8=null_type, typename T9=null_type> class indexer_node;
//indexer node specializations
template<typename T0>
class indexer_node<T0> : public internal::unfolded_indexer_node<tuple<T0> > {
private:
static const int N = 1;
public:
typedef tuple<T0> InputTuple;
typedef typename internal::tagged_msg<size_t, T0> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1>
class indexer_node<T0, T1> : public internal::unfolded_indexer_node<tuple<T0, T1> > {
private:
static const int N = 2;
public:
typedef tuple<T0, T1> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2>
class indexer_node<T0, T1, T2> : public internal::unfolded_indexer_node<tuple<T0, T1, T2> > {
private:
static const int N = 3;
public:
typedef tuple<T0, T1, T2> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3>
class indexer_node<T0, T1, T2, T3> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3> > {
private:
static const int N = 4;
public:
typedef tuple<T0, T1, T2, T3> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3, typename T4>
class indexer_node<T0, T1, T2, T3, T4> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4> > {
private:
static const int N = 5;
public:
typedef tuple<T0, T1, T2, T3, T4> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#if __TBB_VARIADIC_MAX >= 6
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
class indexer_node<T0, T1, T2, T3, T4, T5> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5> > {
private:
static const int N = 6;
public:
typedef tuple<T0, T1, T2, T3, T4, T5> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 6
#if __TBB_VARIADIC_MAX >= 7
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
class indexer_node<T0, T1, T2, T3, T4, T5, T6> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6> > {
private:
static const int N = 7;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 7
#if __TBB_VARIADIC_MAX >= 8
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
private:
static const int N = 8;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 8
#if __TBB_VARIADIC_MAX >= 9
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7, T8> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
private:
static const int N = 9;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 9
#if __TBB_VARIADIC_MAX >= 10
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
class indexer_node/*default*/ : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
private:
static const int N = 10;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
__TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
// Copy constructor
__TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( CODEPTR(), tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 10
#if __TBB_PREVIEW_ASYNC_MSG
inline void internal_make_edge( internal::untyped_sender &p, internal::untyped_receiver &s ) {
#else
template< typename T >
inline void internal_make_edge( sender<T> &p, receiver<T> &s ) {
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
s.internal_add_built_predecessor(p);
p.internal_add_built_successor(s);
#endif
p.register_successor( s );
tbb::internal::fgt_make_edge( &p, &s );
}
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void make_edge( sender<T> &p, receiver<T> &s ) {
internal_make_edge( p, s );
}
#if __TBB_PREVIEW_ASYNC_MSG
template< typename TS, typename TR,
typename = typename tbb::internal::enable_if<tbb::internal::is_same_type<TS, internal::untyped_sender>::value
|| tbb::internal::is_same_type<TR, internal::untyped_receiver>::value>::type>
inline void make_edge( TS &p, TR &s ) {
internal_make_edge( p, s );
}
template< typename T >
inline void make_edge( sender<T> &p, receiver<typename T::async_msg_data_type> &s ) {
internal_make_edge( p, s );
}
template< typename T >
inline void make_edge( sender<typename T::async_msg_data_type> &p, receiver<T> &s ) {
internal_make_edge( p, s );
}
#endif // __TBB_PREVIEW_ASYNC_MSG
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//Makes an edge from port 0 of a multi-output predecessor to port 0 of a multi-input successor.
template< typename T, typename V,
typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void make_edge( T& output, V& input) {
make_edge(get<0>(output.output_ports()), get<0>(input.input_ports()));
}
//Makes an edge from port 0 of a multi-output predecessor to a receiver.
template< typename T, typename R,
typename = typename T::output_ports_type >
inline void make_edge( T& output, receiver<R>& input) {
make_edge(get<0>(output.output_ports()), input);
}
//Makes an edge from a sender to port 0 of a multi-input successor.
template< typename S, typename V,
typename = typename V::input_ports_type >
inline void make_edge( sender<S>& output, V& input) {
make_edge(output, get<0>(input.input_ports()));
}
#endif
#if __TBB_PREVIEW_ASYNC_MSG
inline void internal_remove_edge( internal::untyped_sender &p, internal::untyped_receiver &s ) {
#else
template< typename T >
inline void internal_remove_edge( sender<T> &p, receiver<T> &s ) {
#endif
p.remove_successor( s );
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
// TODO: should we try to remove p from the predecessor list of s, in case the edge is reversed?
p.internal_delete_built_successor(s);
s.internal_delete_built_predecessor(p);
#endif
tbb::internal::fgt_remove_edge( &p, &s );
}
//! Removes an edge between a single predecessor and a single successor
template< typename T >
inline void remove_edge( sender<T> &p, receiver<T> &s ) {
internal_remove_edge( p, s );
}
#if __TBB_PREVIEW_ASYNC_MSG
template< typename TS, typename TR,
typename = typename tbb::internal::enable_if<tbb::internal::is_same_type<TS, internal::untyped_sender>::value
|| tbb::internal::is_same_type<TR, internal::untyped_receiver>::value>::type>
inline void remove_edge( TS &p, TR &s ) {
internal_remove_edge( p, s );
}
template< typename T >
inline void remove_edge( sender<T> &p, receiver<typename T::async_msg_data_type> &s ) {
internal_remove_edge( p, s );
}
template< typename T >
inline void remove_edge( sender<typename T::async_msg_data_type> &p, receiver<T> &s ) {
internal_remove_edge( p, s );
}
#endif // __TBB_PREVIEW_ASYNC_MSG
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//Removes an edge between port 0 of a multi-output predecessor and port 0 of a multi-input successor.
template< typename T, typename V,
typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void remove_edge( T& output, V& input) {
remove_edge(get<0>(output.output_ports()), get<0>(input.input_ports()));
}
//Removes an edge between port 0 of a multi-output predecessor and a receiver.
template< typename T, typename R,
typename = typename T::output_ports_type >
inline void remove_edge( T& output, receiver<R>& input) {
remove_edge(get<0>(output.output_ports()), input);
}
//Removes an edge between a sender and port 0 of a multi-input successor.
template< typename S, typename V,
typename = typename V::input_ports_type >
inline void remove_edge( sender<S>& output, V& input) {
remove_edge(output, get<0>(input.input_ports()));
}
#endif
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
template<typename C >
template< typename S >
void internal::edge_container<C>::sender_extract( S &s ) {
edge_list_type e = built_edges;
for ( typename edge_list_type::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(s, **i);
}
}
template<typename C >
template< typename R >
void internal::edge_container<C>::receiver_extract( R &r ) {
edge_list_type e = built_edges;
for ( typename edge_list_type::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(**i, r);
}
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
//! Returns a copy of the body from a function or continue node
template< typename Body, typename Node >
Body copy_body( Node &n ) {
return n.template copy_function_object<Body>();
}
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//composite_node
template< typename InputTuple, typename OutputTuple > class composite_node;
template< typename... InputTypes, typename... OutputTypes>
class composite_node <tbb::flow::tuple<InputTypes...>, tbb::flow::tuple<OutputTypes...> > : public graph_node{
public:
typedef tbb::flow::tuple< receiver<InputTypes>&... > input_ports_type;
typedef tbb::flow::tuple< sender<OutputTypes>&... > output_ports_type;
private:
std::unique_ptr<input_ports_type> my_input_ports;
std::unique_ptr<output_ports_type> my_output_ports;
static const size_t NUM_INPUTS = sizeof...(InputTypes);
static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);
protected:
void reset_node(reset_flags) __TBB_override {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
composite_node( graph &g, const char *type_name = "composite_node" ) : graph_node(g) {
tbb::internal::fgt_multiinput_multioutput_node( CODEPTR(), tbb::internal::FLOW_COMPOSITE_NODE, this, &this->my_graph );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, type_name );
}
#else
composite_node( graph &g ) : graph_node(g) {
tbb::internal::fgt_multiinput_multioutput_node( CODEPTR(), tbb::internal::FLOW_COMPOSITE_NODE, this, &this->my_graph );
}
#endif
template<typename T1, typename T2>
void set_external_ports(T1&& input_ports_tuple, T2&& output_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_INPUTS == tbb::flow::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");
__TBB_STATIC_ASSERT(NUM_OUTPUTS == tbb::flow::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");
my_input_ports = tbb::internal::make_unique<input_ports_type>(std::forward<T1>(input_ports_tuple));
my_output_ports = tbb::internal::make_unique<output_ports_type>(std::forward<T2>(output_ports_tuple));
tbb::internal::fgt_internal_input_alias_helper<T1, NUM_INPUTS>::alias_port( this, input_ports_tuple);
tbb::internal::fgt_internal_output_alias_helper<T2, NUM_OUTPUTS>::alias_port( this, output_ports_tuple);
}
template< typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template< typename... NodeTypes >
void add_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
input_ports_type& input_ports() {
__TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
return *my_input_ports;
}
output_ports_type& output_ports() {
__TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
return *my_output_ports;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract() __TBB_override {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
//composite_node with only input ports
template< typename... InputTypes>
class composite_node <tbb::flow::tuple<InputTypes...>, tbb::flow::tuple<> > : public graph_node {
public:
typedef tbb::flow::tuple< receiver<InputTypes>&... > input_ports_type;
private:
std::unique_ptr<input_ports_type> my_input_ports;
static const size_t NUM_INPUTS = sizeof...(InputTypes);
protected:
void reset_node(reset_flags) __TBB_override {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
composite_node( graph &g, const char *type_name = "composite_node") : graph_node(g) {
tbb::internal::fgt_composite( CODEPTR(), this, &g );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, type_name );
}
#else
composite_node( graph &g ) : graph_node(g) {
tbb::internal::fgt_composite( CODEPTR(), this, &g );
}
#endif
template<typename T>
void set_external_ports(T&& input_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_INPUTS == tbb::flow::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");
my_input_ports = tbb::internal::make_unique<input_ports_type>(std::forward<T>(input_ports_tuple));
tbb::internal::fgt_internal_input_alias_helper<T, NUM_INPUTS>::alias_port( this, std::forward<T>(input_ports_tuple));
}
template< typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template< typename... NodeTypes >
void add_nodes( const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
input_ports_type& input_ports() {
__TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
return *my_input_ports;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract() __TBB_override {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
//composite_nodes with only output_ports
template<typename... OutputTypes>
class composite_node <tbb::flow::tuple<>, tbb::flow::tuple<OutputTypes...> > : public graph_node {
public:
typedef tbb::flow::tuple< sender<OutputTypes>&... > output_ports_type;
private:
std::unique_ptr<output_ports_type> my_output_ports;
static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);
protected:
void reset_node(reset_flags) __TBB_override {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
__TBB_NOINLINE_SYM composite_node( graph &g, const char *type_name = "composite_node") : graph_node(g) {
tbb::internal::fgt_composite( CODEPTR(), this, &g );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, type_name );
}
#else
__TBB_NOINLINE_SYM composite_node( graph &g ) : graph_node(g) {
tbb::internal::fgt_composite( CODEPTR(), this, &g );
}
#endif
template<typename T>
void set_external_ports(T&& output_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_OUTPUTS == tbb::flow::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");
my_output_ports = tbb::internal::make_unique<output_ports_type>(std::forward<T>(output_ports_tuple));
tbb::internal::fgt_internal_output_alias_helper<T, NUM_OUTPUTS>::alias_port( this, std::forward<T>(output_ports_tuple));
}
template<typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template<typename... NodeTypes >
void add_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
output_ports_type& output_ports() {
__TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
return *my_output_ports;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
void extract() __TBB_override {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
#endif // __TBB_FLOW_GRAPH_CPP11_FEATURES
namespace internal {
template<typename Gateway>
class async_body_base: tbb::internal::no_assign {
public:
typedef Gateway gateway_type;
async_body_base(gateway_type *gateway): my_gateway(gateway) { }
void set_gateway(gateway_type *gateway) {
my_gateway = gateway;
}
protected:
gateway_type *my_gateway;
};
template<typename Input, typename Ports, typename Gateway, typename Body>
class async_body: public async_body_base<Gateway> {
public:
typedef async_body_base<Gateway> base_type;
typedef Gateway gateway_type;
async_body(const Body &body, gateway_type *gateway)
: base_type(gateway), my_body(body) { }
void operator()( const Input &v, Ports & ) {
my_body(v, *this->my_gateway);
}
Body get_body() { return my_body; }
private:
Body my_body;
};
} // namespace internal
} // namespace interfaceX
namespace interface11 {
//! Implements async node
template < typename Input, typename Output,
typename Policy = queueing_lightweight,
typename Allocator=__TBB_DEFAULT_NODE_ALLOCATOR(Input) >
class async_node
: public multifunction_node< Input, tuple< Output >, Policy, Allocator >, public sender< Output >
{
#if !TBB_DEPRECATED_FLOW_NODE_ALLOCATOR
__TBB_STATIC_ASSERT(
(tbb::internal::is_same_type<Allocator, null_type>::value),
"Allocator template parameter for flow graph nodes is deprecated and will removed in the future. "
"To temporary enable the deprecated interface specify TBB_ENABLE_DEPRECATED_NODE_ALLOCATOR."
);
#endif
typedef multifunction_node< Input, tuple< Output >, Policy, Allocator > base_type;
typedef typename internal::multifunction_input<Input, typename base_type::output_ports_type, Policy, Allocator> mfn_input_type;
public:
typedef Input input_type;
typedef Output output_type;
typedef receiver<input_type> receiver_type;
typedef typename receiver_type::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
typedef receiver_gateway<output_type> gateway_type;
typedef internal::async_body_base<gateway_type> async_body_base_type;
typedef typename base_type::output_ports_type output_ports_type;
private:
struct try_put_functor {
typedef internal::multifunction_output<Output> output_port_type;
output_port_type *port;
// TODO: pass value by copy since we do not want to block asynchronous thread.
const Output *value;
bool result;
try_put_functor(output_port_type &p, const Output &v) : port(&p), value(&v), result(false) { }
void operator()() {
result = port->try_put(*value);
}
};
class receiver_gateway_impl: public receiver_gateway<Output> {
public:
receiver_gateway_impl(async_node* node): my_node(node) {}
void reserve_wait() __TBB_override {
tbb::internal::fgt_async_reserve(static_cast<typename async_node::receiver_type *>(my_node), &my_node->my_graph);
my_node->my_graph.reserve_wait();
}
void release_wait() __TBB_override {
my_node->my_graph.release_wait();
tbb::internal::fgt_async_commit(static_cast<typename async_node::receiver_type *>(my_node), &my_node->my_graph);
}
//! Implements gateway_type::try_put for an external activity to submit a message to FG
bool try_put(const Output &i) __TBB_override {
return my_node->try_put_impl(i);
}
private:
async_node* my_node;
} my_gateway;
//The substitute of 'this' for member construction, to prevent compiler warnings
async_node* self() { return this; }
//! Implements gateway_type::try_put for an external activity to submit a message to FG
bool try_put_impl(const Output &i) {
internal::multifunction_output<Output> &port_0 = internal::output_port<0>(*this);
internal::broadcast_cache<output_type>& port_successors = port_0.successors();
tbb::internal::fgt_async_try_put_begin(this, &port_0);
task_list tasks;
bool is_at_least_one_put_successful = port_successors.gather_successful_try_puts(i, tasks);
__TBB_ASSERT( is_at_least_one_put_successful || tasks.empty(),
"Return status is inconsistent with the method operation." );
while( !tasks.empty() ) {
internal::enqueue_in_graph_arena(this->my_graph, tasks.pop_front());
}
tbb::internal::fgt_async_try_put_end(this, &port_0);
return is_at_least_one_put_successful;
}
public:
template<typename Body>
__TBB_NOINLINE_SYM async_node(
graph &g, size_t concurrency,
#if __TBB_CPP11_PRESENT
Body body, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority)
#else
__TBB_FLOW_GRAPH_PRIORITY_ARG1(Body body, node_priority_t priority = tbb::flow::internal::no_priority)
#endif
) : base_type(
g, concurrency,
internal::async_body<Input, typename base_type::output_ports_type, gateway_type, Body>
(body, &my_gateway) __TBB_FLOW_GRAPH_PRIORITY_ARG0(priority) ), my_gateway(self()) {
tbb::internal::fgt_multioutput_node_with_body<1>(
CODEPTR(), tbb::internal::FLOW_ASYNC_NODE,
&this->my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body
);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES && __TBB_CPP11_PRESENT
template <typename Body, typename... Args>
__TBB_NOINLINE_SYM async_node(graph& g, size_t concurrency, Body body, node_priority_t priority)
: async_node(g, concurrency, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename Body, typename... Args>
__TBB_NOINLINE_SYM async_node(
const node_set<Args...>& nodes, size_t concurrency, Body body,
__TBB_FLOW_GRAPH_PRIORITY_ARG1(Policy = Policy(), node_priority_t priority = tbb::flow::internal::no_priority)
) : async_node(nodes.graph_reference(), concurrency, __TBB_FLOW_GRAPH_PRIORITY_ARG1(body, priority)) {
make_edges_in_order(nodes, *this);
}
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
template <typename Body, typename... Args>
__TBB_NOINLINE_SYM async_node(const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t priority)
: async_node(nodes, concurrency, body, Policy(), priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
__TBB_NOINLINE_SYM async_node( const async_node &other ) : base_type(other), sender<Output>(), my_gateway(self()) {
static_cast<async_body_base_type*>(this->my_body->get_body_ptr())->set_gateway(&my_gateway);
static_cast<async_body_base_type*>(this->my_init_body->get_body_ptr())->set_gateway(&my_gateway);
tbb::internal::fgt_multioutput_node_with_body<1>( CODEPTR(), tbb::internal::FLOW_ASYNC_NODE,
&this->my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
gateway_type& gateway() {
return my_gateway;
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
// Define sender< Output >
//! Add a new successor to this node
bool register_successor( successor_type &r ) __TBB_override {
return internal::output_port<0>(*this).register_successor(r);
}
//! Removes a successor from this node
bool remove_successor( successor_type &r ) __TBB_override {
return internal::output_port<0>(*this).remove_successor(r);
}
template<typename Body>
Body copy_function_object() {
typedef internal::multifunction_body<input_type, typename base_type::output_ports_type> mfn_body_type;
typedef internal::async_body<Input, typename base_type::output_ports_type, gateway_type, Body> async_body_type;
mfn_body_type &body_ref = *this->my_body;
async_body_type ab = *static_cast<async_body_type*>(dynamic_cast< internal::multifunction_body_leaf<input_type, typename base_type::output_ports_type, async_body_type> & >(body_ref).get_body_ptr());
return ab.get_body();
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
//! interface to record edges for traversal & deletion
typedef typename internal::edge_container<successor_type> built_successors_type;
typedef typename built_successors_type::edge_list_type successor_list_type;
built_successors_type &built_successors() __TBB_override {
return internal::output_port<0>(*this).built_successors();
}
void internal_add_built_successor( successor_type &r ) __TBB_override {
internal::output_port<0>(*this).internal_add_built_successor(r);
}
void internal_delete_built_successor( successor_type &r ) __TBB_override {
internal::output_port<0>(*this).internal_delete_built_successor(r);
}
void copy_successors( successor_list_type &l ) __TBB_override {
internal::output_port<0>(*this).copy_successors(l);
}
size_t successor_count() __TBB_override {
return internal::output_port<0>(*this).successor_count();
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
protected:
void reset_node( reset_flags f) __TBB_override {
base_type::reset_node(f);
}
};
#if __TBB_PREVIEW_STREAMING_NODE
#include "internal/_flow_graph_streaming_node.h"
#endif // __TBB_PREVIEW_STREAMING_NODE
#include "internal/_flow_graph_node_set_impl.h"
template< typename T >
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
public:
typedef T input_type;
typedef T output_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
typedef typename receiver<input_type>::built_predecessors_type built_predecessors_type;
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
__TBB_NOINLINE_SYM explicit overwrite_node(graph &g) : graph_node(g), my_buffer_is_valid(false) {
my_successors.set_owner( this );
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
overwrite_node(const node_set<Args...>& nodes) : overwrite_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor; doesn't take anything from src; default won't work
__TBB_NOINLINE_SYM overwrite_node( const overwrite_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(), my_buffer_is_valid(false)
{
my_successors.set_owner( this );
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
~overwrite_node() {}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
bool register_successor( successor_type &s ) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
if (my_buffer_is_valid && internal::is_graph_active( my_graph )) {
// We have a valid value that must be forwarded immediately.
bool ret = s.try_put( my_buffer );
if ( ret ) {
// We add the successor that accepted our put
my_successors.register_successor( s );
} else {
// In case of reservation a race between the moment of reservation and register_successor can appear,
// because failed reserve does not mean that register_successor is not ready to put a message immediately.
// We have some sort of infinite loop: reserving node tries to set pull state for the edge,
// but overwrite_node tries to return push state back. That is why we have to break this loop with task creation.
task *rtask = new ( task::allocate_additional_child_of( *( my_graph.root_task() ) ) )
register_predecessor_task( *this, s );
internal::spawn_in_graph_arena( my_graph, *rtask );
}
} else {
// No valid value yet, just add as successor
my_successors.register_successor( s );
}
return true;
}
bool remove_successor( successor_type &s ) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_successors.remove_successor(s);
return true;
}
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
built_predecessors_type &built_predecessors() __TBB_override { return my_built_predecessors; }
built_successors_type &built_successors() __TBB_override { return my_successors.built_successors(); }
void internal_add_built_successor( successor_type &s) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_add_built_successor(s);
}
void internal_delete_built_successor( successor_type &s) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_delete_built_successor(s);
}
size_t successor_count() __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
return my_successors.successor_count();
}
void copy_successors(successor_list_type &v) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_successors.copy_successors(v);
}
void internal_add_built_predecessor( predecessor_type &p) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.add_edge(p);
}
void internal_delete_built_predecessor( predecessor_type &p) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.delete_edge(p);
}
size_t predecessor_count() __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
return my_built_predecessors.edge_count();
}
void copy_predecessors( predecessor_list_type &v ) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.copy_edges(v);
}
void extract() __TBB_override {
my_buffer_is_valid = false;
built_successors().sender_extract(*this);
built_predecessors().receiver_extract(*this);
}
#endif /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
bool try_get( input_type &v ) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
if ( my_buffer_is_valid ) {
v = my_buffer;
return true;
}
return false;
}
//! Reserves an item
bool try_reserve( T &v ) __TBB_override {
return try_get(v);
}
//! Releases the reserved item
bool try_release() __TBB_override { return true; }
//! Consumes the reserved item
bool try_consume() __TBB_override { return true; }
bool is_valid() {
spin_mutex::scoped_lock l( my_mutex );
return my_buffer_is_valid;
}
void clear() {
spin_mutex::scoped_lock l( my_mutex );
my_buffer_is_valid = false;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
task * try_put_task( const input_type &v ) __TBB_override {
spin_mutex::scoped_lock l( my_mutex );
return try_put_task_impl(v);
}
task * try_put_task_impl(const input_type &v) {
my_buffer = v;
my_buffer_is_valid = true;
task * rtask = my_successors.try_put_task(v);
if (!rtask) rtask = SUCCESSFULLY_ENQUEUED;
return rtask;
}
graph& graph_reference() const __TBB_override {
return my_graph;
}
//! Breaks an infinite loop between the node reservation and register_successor call
struct register_predecessor_task : public graph_task {
register_predecessor_task(predecessor_type& owner, successor_type& succ) :
o(owner), s(succ) {};
tbb::task* execute() __TBB_override {
if (!s.register_predecessor(o)) {
o.register_successor(s);
}
return NULL;
}
predecessor_type& o;
successor_type& s;
};
spin_mutex my_mutex;
internal::broadcast_cache< input_type, null_rw_mutex > my_successors;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
internal::edge_container<predecessor_type> my_built_predecessors;
#endif
input_type my_buffer;
bool my_buffer_is_valid;
void reset_receiver(reset_flags /*f*/) __TBB_override {}
void reset_node( reset_flags f) __TBB_override {
my_buffer_is_valid = false;
if (f&rf_clear_edges) {
my_successors.clear();
}
}
}; // overwrite_node
template< typename T >
class write_once_node : public overwrite_node<T> {
public:
typedef T input_type;
typedef T output_type;
typedef overwrite_node<T> base_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename sender<output_type>::successor_type successor_type;
//! Constructor
__TBB_NOINLINE_SYM explicit write_once_node(graph& g) : base_type(g) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template <typename... Args>
write_once_node(const node_set<Args...>& nodes) : write_once_node(nodes.graph_reference()) {
make_edges_in_order(nodes, *this);
}
#endif
//! Copy constructor: call base class copy constructor
__TBB_NOINLINE_SYM write_once_node( const write_once_node& src ) : base_type(src) {
tbb::internal::fgt_node( CODEPTR(), tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) __TBB_override {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
task *try_put_task( const T &v ) __TBB_override {
spin_mutex::scoped_lock l( this->my_mutex );
return this->my_buffer_is_valid ? NULL : this->try_put_task_impl(v);
}
};
} // interfaceX
using interface11::reset_flags;
using interface11::rf_reset_protocol;
using interface11::rf_reset_bodies;
using interface11::rf_clear_edges;
using interface11::graph;
using interface11::graph_node;
using interface11::continue_msg;
using interface11::source_node;
using interface11::input_node;
using interface11::function_node;
using interface11::multifunction_node;
using interface11::split_node;
using interface11::internal::output_port;
using interface11::indexer_node;
using interface11::internal::tagged_msg;
using interface11::internal::cast_to;
using interface11::internal::is_a;
using interface11::continue_node;
using interface11::overwrite_node;
using interface11::write_once_node;
using interface11::broadcast_node;
using interface11::buffer_node;
using interface11::queue_node;
using interface11::sequencer_node;
using interface11::priority_queue_node;
using interface11::limiter_node;
using namespace interface11::internal::graph_policy_namespace;
using interface11::join_node;
using interface11::input_port;
using interface11::copy_body;
using interface11::make_edge;
using interface11::remove_edge;
using interface11::internal::tag_value;
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
using interface11::composite_node;
#endif
using interface11::async_node;
#if __TBB_PREVIEW_ASYNC_MSG
using interface11::async_msg;
#endif
#if __TBB_PREVIEW_STREAMING_NODE
using interface11::port_ref;
using interface11::streaming_node;
#endif // __TBB_PREVIEW_STREAMING_NODE
#if __TBB_PREVIEW_FLOW_GRAPH_PRIORITIES
using internal::node_priority_t;
using internal::no_priority;
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
using interface11::internal::follows;
using interface11::internal::precedes;
using interface11::internal::make_node_set;
using interface11::internal::make_edges;
#endif
} // flow
} // tbb
// Include deduction guides for node classes
#include "internal/_flow_graph_nodes_deduction.h"
#undef __TBB_PFG_RESET_ARG
#undef __TBB_COMMA
#undef __TBB_DEFAULT_NODE_ALLOCATOR
#include "internal/_warning_suppress_disable_notice.h"
#undef __TBB_flow_graph_H_include_area
#if TBB_USE_THREADING_TOOLS && TBB_PREVIEW_FLOW_GRAPH_TRACE && ( __linux__ || __APPLE__ )
#undef __TBB_NOINLINE_SYM
#endif
#endif // __TBB_flow_graph_H