Current File : //proc/thread-self/root/kunden/usr/include/tbb/internal/_flow_graph_node_impl.h
/*
    Copyright (c) 2005-2020 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB__flow_graph_node_impl_H
#define __TBB__flow_graph_node_impl_H

#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif

#include "_flow_graph_item_buffer_impl.h"

//! @cond INTERNAL
namespace internal {

    using tbb::internal::aggregated_operation;
    using tbb::internal::aggregating_functor;
    using tbb::internal::aggregator;

     template< typename T, typename A >
     class function_input_queue : public item_buffer<T,A> {
     public:
         bool empty() const {
             return this->buffer_empty();
         }

         const T& front() const {
             return this->item_buffer<T, A>::front();
         }

         bool pop( T& t ) {
             return this->pop_front( t );
         }

         void pop() {
             this->destroy_front();
         }

         bool push( T& t ) {
             return this->push_back( t );
         }
     };

    //! Input and scheduling for a function node that takes a type Input as input
    //  The only up-ref is apply_body_impl, which should implement the function
    //  call and any handling of the result.
    template< typename Input, typename Policy, typename A, typename ImplType >
    class function_input_base : public receiver<Input>, tbb::internal::no_assign {
        enum op_type {reg_pred, rem_pred, try_fwd, tryput_bypass, app_body_bypass, occupy_concurrency
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
            , add_blt_pred, del_blt_pred,
            blt_pred_cnt, blt_pred_cpy   // create vector copies of preds and succs
#endif
        };
        typedef function_input_base<Input, Policy, A, ImplType> class_type;

    public:

        //! The input type of this receiver
        typedef Input input_type;
        typedef typename receiver<input_type>::predecessor_type predecessor_type;
        typedef predecessor_cache<input_type, null_mutex > predecessor_cache_type;
        typedef function_input_queue<input_type, A> input_queue_type;
        typedef typename tbb::internal::allocator_rebind<A, input_queue_type>::type queue_allocator_type;
        __TBB_STATIC_ASSERT(!((internal::has_policy<queueing, Policy>::value) && (internal::has_policy<rejecting, Policy>::value)),
                              "queueing and rejecting policies can't be specified simultaneously");

#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
        typedef typename predecessor_cache_type::built_predecessors_type built_predecessors_type;
        typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
#endif

        //! Constructor for function_input_base
        function_input_base(
            graph &g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(size_t max_concurrency, node_priority_t priority)
        ) : my_graph_ref(g), my_max_concurrency(max_concurrency)
          , __TBB_FLOW_GRAPH_PRIORITY_ARG1(my_concurrency(0), my_priority(priority))
          , my_queue(!internal::has_policy<rejecting, Policy>::value ? new input_queue_type() : NULL)
          , forwarder_busy(false)
        {
            my_predecessors.set_owner(this);
            my_aggregator.initialize_handler(handler_type(this));
        }

        //! Copy constructor
        function_input_base( const function_input_base& src)
            : receiver<Input>(), tbb::internal::no_assign()
            , my_graph_ref(src.my_graph_ref), my_max_concurrency(src.my_max_concurrency)
            , __TBB_FLOW_GRAPH_PRIORITY_ARG1(my_concurrency(0), my_priority(src.my_priority))
            , my_queue(src.my_queue ? new input_queue_type() : NULL), forwarder_busy(false)
        {
            my_predecessors.set_owner(this);
            my_aggregator.initialize_handler(handler_type(this));
        }

        //! Destructor
        // The queue is allocated by the constructor for {multi}function_node.
        // TODO: pass the graph_buffer_policy to the base so it can allocate the queue instead.
        // This would be an interface-breaking change.
        virtual ~function_input_base() {
            if ( my_queue ) delete my_queue;
        }

        task* try_put_task( const input_type& t) __TBB_override {
            return try_put_task_impl(t, internal::has_policy<lightweight, Policy>());
        }

        //! Adds src to the list of cached predecessors.
        bool register_predecessor( predecessor_type &src ) __TBB_override {
            operation_type op_data(reg_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
            return true;
        }

        //! Removes src from the list of cached predecessors.
        bool remove_predecessor( predecessor_type &src ) __TBB_override {
            operation_type op_data(rem_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
            return true;
        }

#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
        //! Adds to list of predecessors added by make_edge
        void internal_add_built_predecessor( predecessor_type &src) __TBB_override {
            operation_type op_data(add_blt_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
        }

        //! removes from to list of predecessors (used by remove_edge)
        void internal_delete_built_predecessor( predecessor_type &src) __TBB_override {
            operation_type op_data(del_blt_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
        }

        size_t predecessor_count() __TBB_override {
            operation_type op_data(blt_pred_cnt);
            my_aggregator.execute(&op_data);
            return op_data.cnt_val;
        }

        void copy_predecessors(predecessor_list_type &v) __TBB_override {
            operation_type op_data(blt_pred_cpy);
            op_data.predv = &v;
            my_aggregator.execute(&op_data);
        }

        built_predecessors_type &built_predecessors() __TBB_override {
            return my_predecessors.built_predecessors();
        }
#endif  /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */

    protected:

        void reset_function_input_base( reset_flags f) {
            my_concurrency = 0;
            if(my_queue) {
                my_queue->reset();
            }
            reset_receiver(f);
            forwarder_busy = false;
        }

        graph& my_graph_ref;
        const size_t my_max_concurrency;
        size_t my_concurrency;
        __TBB_FLOW_GRAPH_PRIORITY_EXPR( node_priority_t my_priority; )
        input_queue_type *my_queue;
        predecessor_cache<input_type, null_mutex > my_predecessors;

        void reset_receiver( reset_flags f) __TBB_override {
            if( f & rf_clear_edges) my_predecessors.clear();
            else
                my_predecessors.reset();
            __TBB_ASSERT(!(f & rf_clear_edges) || my_predecessors.empty(), "function_input_base reset failed");
        }

        graph& graph_reference() const __TBB_override {
            return my_graph_ref;
        }

        task* try_get_postponed_task(const input_type& i) {
            operation_type op_data(i, app_body_bypass);  // tries to pop an item or get_item
            my_aggregator.execute(&op_data);
            return op_data.bypass_t;
        }

    private:

        friend class apply_body_task_bypass< class_type, input_type >;
        friend class forward_task_bypass< class_type >;

        class operation_type : public aggregated_operation< operation_type > {
        public:
            char type;
            union {
                input_type *elem;
                predecessor_type *r;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
                size_t cnt_val;
                predecessor_list_type *predv;
#endif  /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
            };
            tbb::task *bypass_t;
            operation_type(const input_type& e, op_type t) :
                type(char(t)), elem(const_cast<input_type*>(&e)) {}
            operation_type(op_type t) : type(char(t)), r(NULL) {}
        };

        bool forwarder_busy;
        typedef internal::aggregating_functor<class_type, operation_type> handler_type;
        friend class internal::aggregating_functor<class_type, operation_type>;
        aggregator< handler_type, operation_type > my_aggregator;

        task* perform_queued_requests() {
            task* new_task = NULL;
            if(my_queue) {
                if(!my_queue->empty()) {
                    ++my_concurrency;
                    new_task = create_body_task(my_queue->front());

                    my_queue->pop();
                }
            }
            else {
                input_type i;
                if(my_predecessors.get_item(i)) {
                    ++my_concurrency;
                    new_task = create_body_task(i);
                }
            }
            return new_task;
        }
        void handle_operations(operation_type *op_list) {
            operation_type *tmp;
            while (op_list) {
                tmp = op_list;
                op_list = op_list->next;
                switch (tmp->type) {
                case reg_pred:
                    my_predecessors.add(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    if (!forwarder_busy) {
                        forwarder_busy = true;
                        spawn_forward_task();
                    }
                    break;
                case rem_pred:
                    my_predecessors.remove(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case app_body_bypass: {
                        tmp->bypass_t = NULL;
                        __TBB_ASSERT(my_max_concurrency != 0, NULL);
                        --my_concurrency;
                        if(my_concurrency<my_max_concurrency)
                            tmp->bypass_t = perform_queued_requests();

                        __TBB_store_with_release(tmp->status, SUCCEEDED);
                    }
                    break;
                case tryput_bypass: internal_try_put_task(tmp);  break;
                case try_fwd: internal_forward(tmp);  break;
                case occupy_concurrency:
                    if (my_concurrency < my_max_concurrency) {
                        ++my_concurrency;
                        __TBB_store_with_release(tmp->status, SUCCEEDED);
                    } else {
                        __TBB_store_with_release(tmp->status, FAILED);
                    }
                    break;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
                case add_blt_pred: {
                         my_predecessors.internal_add_built_predecessor(*(tmp->r));
                        __TBB_store_with_release(tmp->status, SUCCEEDED);
                    }
                    break;
                case del_blt_pred:
                    my_predecessors.internal_delete_built_predecessor(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case blt_pred_cnt:
                    tmp->cnt_val = my_predecessors.predecessor_count();
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case blt_pred_cpy:
                    my_predecessors.copy_predecessors( *(tmp->predv) );
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
#endif  /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */
                }
            }
        }

        //! Put to the node, but return the task instead of enqueueing it
        void internal_try_put_task(operation_type *op) {
            __TBB_ASSERT(my_max_concurrency != 0, NULL);
            if (my_concurrency < my_max_concurrency) {
               ++my_concurrency;
               task * new_task = create_body_task(*(op->elem));
               op->bypass_t = new_task;
               __TBB_store_with_release(op->status, SUCCEEDED);
           } else if ( my_queue && my_queue->push(*(op->elem)) ) {
               op->bypass_t = SUCCESSFULLY_ENQUEUED;
               __TBB_store_with_release(op->status, SUCCEEDED);
           } else {
               op->bypass_t = NULL;
               __TBB_store_with_release(op->status, FAILED);
           }
        }

        //! Creates tasks for postponed messages if available and if concurrency allows
        void internal_forward(operation_type *op) {
            op->bypass_t = NULL;
            if (my_concurrency < my_max_concurrency || !my_max_concurrency)
                op->bypass_t = perform_queued_requests();
            if(op->bypass_t)
                __TBB_store_with_release(op->status, SUCCEEDED);
            else {
                forwarder_busy = false;
                __TBB_store_with_release(op->status, FAILED);
            }
        }

        task* internal_try_put_bypass( const input_type& t ) {
            operation_type op_data(t, tryput_bypass);
            my_aggregator.execute(&op_data);
            if( op_data.status == internal::SUCCEEDED ) {
                return op_data.bypass_t;
            }
            return NULL;
        }

        task* try_put_task_impl( const input_type& t, /*lightweight=*/tbb::internal::true_type ) {
            if( my_max_concurrency == 0 ) {
                return apply_body_bypass(t);
            } else {
                operation_type check_op(t, occupy_concurrency);
                my_aggregator.execute(&check_op);
                if( check_op.status == internal::SUCCEEDED ) {
                    return apply_body_bypass(t);
                }
                return internal_try_put_bypass(t);
            }
        }

        task* try_put_task_impl( const input_type& t, /*lightweight=*/tbb::internal::false_type ) {
            if( my_max_concurrency == 0 ) {
                return create_body_task(t);
            } else {
                return internal_try_put_bypass(t);
            }
        }

        //! Applies the body to the provided input
        //  then decides if more work is available
        task * apply_body_bypass( const input_type &i ) {
            return static_cast<ImplType *>(this)->apply_body_impl_bypass(i);
        }

        //! allocates a task to apply a body
        inline task * create_body_task( const input_type &input ) {
            return (internal::is_graph_active(my_graph_ref)) ?
                new( task::allocate_additional_child_of(*(my_graph_ref.root_task())) )
                apply_body_task_bypass < class_type, input_type >(
                    *this, __TBB_FLOW_GRAPH_PRIORITY_ARG1(input, my_priority))
                : NULL;
        }

       //! This is executed by an enqueued task, the "forwarder"
       task* forward_task() {
           operation_type op_data(try_fwd);
           task* rval = NULL;
           do {
               op_data.status = WAIT;
               my_aggregator.execute(&op_data);
               if(op_data.status == SUCCEEDED) {
                   task* ttask = op_data.bypass_t;
                   __TBB_ASSERT( ttask && ttask != SUCCESSFULLY_ENQUEUED, NULL );
                   rval = combine_tasks(my_graph_ref, rval, ttask);
               }
           } while (op_data.status == SUCCEEDED);
           return rval;
       }

       inline task *create_forward_task() {
           return (internal::is_graph_active(my_graph_ref)) ?
               new( task::allocate_additional_child_of(*(my_graph_ref.root_task())) )
               forward_task_bypass< class_type >( __TBB_FLOW_GRAPH_PRIORITY_ARG1(*this, my_priority) )
               : NULL;
       }

       //! Spawns a task that calls forward()
       inline void spawn_forward_task() {
           task* tp = create_forward_task();
           if(tp) {
               internal::spawn_in_graph_arena(graph_reference(), *tp);
           }
       }
    };  // function_input_base

    //! Implements methods for a function node that takes a type Input as input and sends
    //  a type Output to its successors.
    template< typename Input, typename Output, typename Policy, typename A>
    class function_input : public function_input_base<Input, Policy, A, function_input<Input,Output,Policy,A> > {
    public:
        typedef Input input_type;
        typedef Output output_type;
        typedef function_body<input_type, output_type> function_body_type;
        typedef function_input<Input, Output, Policy,A> my_class;
        typedef function_input_base<Input, Policy, A, my_class> base_type;
        typedef function_input_queue<input_type, A> input_queue_type;

        // constructor
        template<typename Body>
        function_input(
            graph &g, size_t max_concurrency,
            __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority)
        ) : base_type(g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(max_concurrency, priority))
          , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
          , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) {
        }

        //! Copy constructor
        function_input( const function_input& src ) :
                base_type(src),
                my_body( src.my_init_body->clone() ),
                my_init_body(src.my_init_body->clone() ) {
        }

        ~function_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            function_body_type &body_ref = *this->my_body;
            return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
        }

        output_type apply_body_impl( const input_type& i) {
            // There is an extra copied needed to capture the
            // body execution without the try_put
            tbb::internal::fgt_begin_body( my_body );
            output_type v = (*my_body)(i);
            tbb::internal::fgt_end_body( my_body );
            return v;
        }

        //TODO: consider moving into the base class
        task * apply_body_impl_bypass( const input_type &i) {
            output_type v = apply_body_impl(i);
#if TBB_DEPRECATED_MESSAGE_FLOW_ORDER
            task* successor_task = successors().try_put_task(v);
#endif
            task* postponed_task = NULL;
            if( base_type::my_max_concurrency != 0 ) {
                postponed_task = base_type::try_get_postponed_task(i);
                __TBB_ASSERT( !postponed_task || postponed_task != SUCCESSFULLY_ENQUEUED, NULL );
            }
#if TBB_DEPRECATED_MESSAGE_FLOW_ORDER
            graph& g = base_type::my_graph_ref;
            return combine_tasks(g, successor_task, postponed_task);
#else
            if( postponed_task ) {
                // make the task available for other workers since we do not know successors'
                // execution policy
                internal::spawn_in_graph_arena(base_type::graph_reference(), *postponed_task);
            }
            task* successor_task = successors().try_put_task(v);
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (push)
#pragma warning (disable: 4127)  /* suppress conditional expression is constant */
#endif
            if(internal::has_policy<lightweight, Policy>::value) {
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (pop)
#endif
                if(!successor_task) {
                    // Return confirmative status since current
                    // node's body has been executed anyway
                    successor_task = SUCCESSFULLY_ENQUEUED;
                }
            }
            return successor_task;
#endif /* TBB_DEPRECATED_MESSAGE_FLOW_ORDER */
        }

    protected:

        void reset_function_input(reset_flags f) {
            base_type::reset_function_input_base(f);
            if(f & rf_reset_bodies) {
                function_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
        }

        function_body_type *my_body;
        function_body_type *my_init_body;
        virtual broadcast_cache<output_type > &successors() = 0;

    };  // function_input


    // helper templates to clear the successor edges of the output ports of an multifunction_node
    template<int N> struct clear_element {
        template<typename P> static void clear_this(P &p) {
            (void)tbb::flow::get<N-1>(p).successors().clear();
            clear_element<N-1>::clear_this(p);
        }
        template<typename P> static bool this_empty(P &p) {
            if(tbb::flow::get<N-1>(p).successors().empty())
                return clear_element<N-1>::this_empty(p);
            return false;
        }
    };

    template<> struct clear_element<1> {
        template<typename P> static void clear_this(P &p) {
            (void)tbb::flow::get<0>(p).successors().clear();
        }
        template<typename P> static bool this_empty(P &p) {
            return tbb::flow::get<0>(p).successors().empty();
        }
    };

#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
    // helper templates to extract the output ports of an multifunction_node from graph
    template<int N> struct extract_element {
        template<typename P> static void extract_this(P &p) {
            (void)tbb::flow::get<N-1>(p).successors().built_successors().sender_extract(tbb::flow::get<N-1>(p));
            extract_element<N-1>::extract_this(p);
        }
    };

    template<> struct extract_element<1> {
        template<typename P> static void extract_this(P &p) {
            (void)tbb::flow::get<0>(p).successors().built_successors().sender_extract(tbb::flow::get<0>(p));
        }
    };
#endif

    template <typename OutputTuple>
    struct init_output_ports {
#if __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT
        template <typename... Args>
        static OutputTuple call(graph& g, const tbb::flow::tuple<Args...>&) {
            return OutputTuple(Args(g)...);
        }
#else // __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT
        template <typename T1>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1>&) {
            return OutputTuple(T1(g));
        }

        template <typename T1, typename T2>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1, T2>&) {
            return OutputTuple(T1(g), T2(g));
        }

        template <typename T1, typename T2, typename T3>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1, T2, T3>&) {
            return OutputTuple(T1(g), T2(g), T3(g));
        }

        template <typename T1, typename T2, typename T3, typename T4>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1, T2, T3, T4>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g));
        }

        template <typename T1, typename T2, typename T3, typename T4, typename T5>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1, T2, T3, T4, T5>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g));
        }
#if __TBB_VARIADIC_MAX >= 6
        template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
        static OutputTuple call(graph& g, const tbb::flow::tuple<T1, T2, T3, T4, T5, T6>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g));
        }
#endif
#if __TBB_VARIADIC_MAX >= 7
        template <typename T1, typename T2, typename T3, typename T4,
                  typename T5, typename T6, typename T7>
        static OutputTuple call(graph& g,
                                const tbb::flow::tuple<T1, T2, T3, T4, T5, T6, T7>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g));
        }
#endif
#if __TBB_VARIADIC_MAX >= 8
        template <typename T1, typename T2, typename T3, typename T4,
                  typename T5, typename T6, typename T7, typename T8>
        static OutputTuple call(graph& g,
                                const tbb::flow::tuple<T1, T2, T3, T4, T5, T6, T7, T8>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g));
        }
#endif
#if __TBB_VARIADIC_MAX >= 9
        template <typename T1, typename T2, typename T3, typename T4,
                  typename T5, typename T6, typename T7, typename T8, typename T9>
        static OutputTuple call(graph& g,
                                const tbb::flow::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g), T9(g));
        }
#endif
#if __TBB_VARIADIC_MAX >= 9
        template <typename T1, typename T2, typename T3, typename T4, typename T5,
                  typename T6, typename T7, typename T8, typename T9, typename T10>
        static OutputTuple call(graph& g,
                                const tbb::flow::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>&) {
            return OutputTuple(T1(g), T2(g), T3(g), T4(g), T5(g), T6(g), T7(g), T8(g), T9(g), T10(g));
        }
#endif
#endif // __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT
    }; // struct init_output_ports

    //! Implements methods for a function node that takes a type Input as input
    //  and has a tuple of output ports specified.
    template< typename Input, typename OutputPortSet, typename Policy, typename A>
    class multifunction_input : public function_input_base<Input, Policy, A, multifunction_input<Input,OutputPortSet,Policy,A> > {
    public:
        static const int N = tbb::flow::tuple_size<OutputPortSet>::value;
        typedef Input input_type;
        typedef OutputPortSet output_ports_type;
        typedef multifunction_body<input_type, output_ports_type> multifunction_body_type;
        typedef multifunction_input<Input, OutputPortSet, Policy, A> my_class;
        typedef function_input_base<Input, Policy, A, my_class> base_type;
        typedef function_input_queue<input_type, A> input_queue_type;

        // constructor
        template<typename Body>
        multifunction_input(graph &g, size_t max_concurrency,
                            __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority)
        ) : base_type(g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(max_concurrency, priority))
          , my_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) )
          , my_init_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) )
          , my_output_ports(init_output_ports<output_ports_type>::call(g, my_output_ports)){
        }

        //! Copy constructor
        multifunction_input( const multifunction_input& src ) :
                base_type(src),
                my_body( src.my_init_body->clone() ),
                my_init_body(src.my_init_body->clone() ),
                my_output_ports( init_output_ports<output_ports_type>::call(src.my_graph_ref, my_output_ports) ) {
        }

        ~multifunction_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            multifunction_body_type &body_ref = *this->my_body;
            return *static_cast<Body*>(dynamic_cast< internal::multifunction_body_leaf<input_type, output_ports_type, Body> & >(body_ref).get_body_ptr());
        }

        // for multifunction nodes we do not have a single successor as such.  So we just tell
        // the task we were successful.
        //TODO: consider moving common parts with implementation in function_input into separate function
        task * apply_body_impl_bypass( const input_type &i) {
            tbb::internal::fgt_begin_body( my_body );
            (*my_body)(i, my_output_ports);
            tbb::internal::fgt_end_body( my_body );
            task* ttask = NULL;
            if(base_type::my_max_concurrency != 0) {
                ttask = base_type::try_get_postponed_task(i);
            }
            return ttask ? ttask : SUCCESSFULLY_ENQUEUED;
        }

        output_ports_type &output_ports(){ return my_output_ports; }

    protected:
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
        void extract() {
            extract_element<N>::extract_this(my_output_ports);
        }
#endif

        void reset(reset_flags f) {
            base_type::reset_function_input_base(f);
            if(f & rf_clear_edges)clear_element<N>::clear_this(my_output_ports);
            if(f & rf_reset_bodies) {
                multifunction_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
            __TBB_ASSERT(!(f & rf_clear_edges) || clear_element<N>::this_empty(my_output_ports), "multifunction_node reset failed");
        }

        multifunction_body_type *my_body;
        multifunction_body_type *my_init_body;
        output_ports_type my_output_ports;

    };  // multifunction_input

    // template to refer to an output port of a multifunction_node
    template<size_t N, typename MOP>
    typename tbb::flow::tuple_element<N, typename MOP::output_ports_type>::type &output_port(MOP &op) {
        return tbb::flow::get<N>(op.output_ports());
    }

    inline void check_task_and_spawn(graph& g, task* t) {
        if (t && t != SUCCESSFULLY_ENQUEUED) {
            internal::spawn_in_graph_arena(g, *t);
        }
    }

    // helper structs for split_node
    template<int N>
    struct emit_element {
        template<typename T, typename P>
        static task* emit_this(graph& g, const T &t, P &p) {
            // TODO: consider to collect all the tasks in task_list and spawn them all at once
            task* last_task = tbb::flow::get<N-1>(p).try_put_task(tbb::flow::get<N-1>(t));
            check_task_and_spawn(g, last_task);
            return emit_element<N-1>::emit_this(g,t,p);
        }
    };

    template<>
    struct emit_element<1> {
        template<typename T, typename P>
        static task* emit_this(graph& g, const T &t, P &p) {
            task* last_task = tbb::flow::get<0>(p).try_put_task(tbb::flow::get<0>(t));
            check_task_and_spawn(g, last_task);
            return SUCCESSFULLY_ENQUEUED;
        }
    };

    //! Implements methods for an executable node that takes continue_msg as input
    template< typename Output, typename Policy>
    class continue_input : public continue_receiver {
    public:

        //! The input type of this receiver
        typedef continue_msg input_type;

        //! The output type of this receiver
        typedef Output output_type;
        typedef function_body<input_type, output_type> function_body_type;
        typedef continue_input<output_type, Policy> class_type;

        template< typename Body >
        continue_input( graph &g, __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority) )
            : continue_receiver(__TBB_FLOW_GRAPH_PRIORITY_ARG1(/*number_of_predecessors=*/0, priority))
            , my_graph_ref(g)
            , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
            , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
            { }

        template< typename Body >
        continue_input( graph &g, int number_of_predecessors,
                        __TBB_FLOW_GRAPH_PRIORITY_ARG1(Body& body, node_priority_t priority)
        ) : continue_receiver( __TBB_FLOW_GRAPH_PRIORITY_ARG1(number_of_predecessors, priority) )
          , my_graph_ref(g)
          , my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
          , my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
        { }

        continue_input( const continue_input& src ) : continue_receiver(src),
            my_graph_ref(src.my_graph_ref),
            my_body( src.my_init_body->clone() ),
            my_init_body( src.my_init_body->clone() ) {}

        ~continue_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            function_body_type &body_ref = *my_body;
            return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
        }

        void reset_receiver( reset_flags f) __TBB_override {
            continue_receiver::reset_receiver(f);
            if(f & rf_reset_bodies) {
                function_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
        }

    protected:

        graph& my_graph_ref;
        function_body_type *my_body;
        function_body_type *my_init_body;

        virtual broadcast_cache<output_type > &successors() = 0;

        friend class apply_body_task_bypass< class_type, continue_msg >;

        //! Applies the body to the provided input
        task *apply_body_bypass( input_type ) {
            // There is an extra copied needed to capture the
            // body execution without the try_put
            tbb::internal::fgt_begin_body( my_body );
            output_type v = (*my_body)( continue_msg() );
            tbb::internal::fgt_end_body( my_body );
            return successors().try_put_task( v );
        }

        task* execute() __TBB_override {
            if(!internal::is_graph_active(my_graph_ref)) {
                return NULL;
            }
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (push)
#pragma warning (disable: 4127)  /* suppress conditional expression is constant */
#endif
            if(internal::has_policy<lightweight, Policy>::value) {
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (pop)
#endif
                return apply_body_bypass( continue_msg() );
            }
            else {
                return new ( task::allocate_additional_child_of( *(my_graph_ref.root_task()) ) )
                       apply_body_task_bypass< class_type, continue_msg >(
                           *this, __TBB_FLOW_GRAPH_PRIORITY_ARG1(continue_msg(), my_priority) );
            }
        }

        graph& graph_reference() const __TBB_override {
            return my_graph_ref;
        }
    };  // continue_input

    //! Implements methods for both executable and function nodes that puts Output to its successors
    template< typename Output >
    class function_output : public sender<Output> {
    public:

        template<int N> friend struct clear_element;
        typedef Output output_type;
        typedef typename sender<output_type>::successor_type successor_type;
        typedef broadcast_cache<output_type> broadcast_cache_type;
#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
        typedef typename sender<output_type>::built_successors_type built_successors_type;
        typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif

        function_output( graph& g) : my_graph_ref(g) { my_successors.set_owner(this); }
        function_output(const function_output & other) : sender<output_type>(), my_graph_ref(other.my_graph_ref) {
            my_successors.set_owner(this);
        }

        //! Adds a new successor to this node
        bool register_successor( successor_type &r ) __TBB_override {
            successors().register_successor( r );
            return true;
        }

        //! Removes a successor from this node
        bool remove_successor( successor_type &r ) __TBB_override {
            successors().remove_successor( r );
            return true;
        }

#if TBB_DEPRECATED_FLOW_NODE_EXTRACTION
        built_successors_type &built_successors() __TBB_override { return successors().built_successors(); }


        void internal_add_built_successor( successor_type &r) __TBB_override {
            successors().internal_add_built_successor( r );
        }

        void internal_delete_built_successor( successor_type &r) __TBB_override {
            successors().internal_delete_built_successor( r );
        }

        size_t successor_count() __TBB_override {
            return successors().successor_count();
        }

        void  copy_successors( successor_list_type &v) __TBB_override {
            successors().copy_successors(v);
        }
#endif  /* TBB_DEPRECATED_FLOW_NODE_EXTRACTION */

        // for multifunction_node.  The function_body that implements
        // the node will have an input and an output tuple of ports.  To put
        // an item to a successor, the body should
        //
        //    get<I>(output_ports).try_put(output_value);
        //
        // if task pointer is returned will always spawn and return true, else
        // return value will be bool returned from successors.try_put.
        task *try_put_task(const output_type &i) { // not a virtual method in this class
            return my_successors.try_put_task(i);
        }

        broadcast_cache_type &successors() { return my_successors; }

        graph& graph_reference() const { return my_graph_ref; }
    protected:
        broadcast_cache_type my_successors;
        graph& my_graph_ref;
    };  // function_output

    template< typename Output >
    class multifunction_output : public function_output<Output> {
    public:
        typedef Output output_type;
        typedef function_output<output_type> base_type;
        using base_type::my_successors;

        multifunction_output(graph& g) : base_type(g) {my_successors.set_owner(this);}
        multifunction_output( const multifunction_output& other) : base_type(other.my_graph_ref) { my_successors.set_owner(this); }

        bool try_put(const output_type &i) {
            task *res = try_put_task(i);
            if(!res) return false;
            if(res != SUCCESSFULLY_ENQUEUED) {
                FLOW_SPAWN(*res); // TODO: Spawn task inside arena
            }
            return true;
        }

        using base_type::graph_reference;

    protected:

        task* try_put_task(const output_type &i) {
            return my_successors.try_put_task(i);
        }

        template <int N> friend struct emit_element;

    };  // multifunction_output

//composite_node
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
    template<typename CompositeType>
    void add_nodes_impl(CompositeType*, bool) {}

    template< typename CompositeType, typename NodeType1, typename... NodeTypes >
    void add_nodes_impl(CompositeType *c_node, bool visible, const NodeType1& n1, const NodeTypes&... n) {
        void *addr = const_cast<NodeType1 *>(&n1);

        fgt_alias_port(c_node, addr, visible);
        add_nodes_impl(c_node, visible, n...);
    }
#endif

}  // internal

#endif // __TBB__flow_graph_node_impl_H