Current File : //lib/python3.9/site-packages/pip/_internal/utils/__pycache__/parallel.cpython-39.pyc
a

[��f|�@s\dZddgZddlmZddlmZddlmZddlmZ	ddl
mZmZm
Z
mZmZddlmZeejej	fZed	�Zed
�ZzddlZWney�dZYn0d
ZdZeee
ed�dd��Zdeegefeeee
ed�dd�Zdeegefeeee
ed�dd�Zdeegefeeee
ed�dd�Ze�rPeZZneZeZdS)abConvenient parallelization of higher order functions.

This module provides two helper functions, with appropriate fallbacks on
Python 2 and on systems lacking support for synchronization mechanisms:

- map_multiprocess
- map_multithread

These helpers work like Python 3's map, with two differences:

- They don't guarantee the order of processing of
  the elements of the iterable.
- The underlying process/thread pools chop the iterable into
  a number of chunks, so that for very long iterables using
  a large value for chunksize can make the job complete much faster
  than using the default value of 1.
�map_multiprocess�map_multithread�)�contextmanager)�Pool��pool)�Callable�Iterable�Iterator�TypeVar�Union)�DEFAULT_POOLSIZE�S�TNTFi��)r�returnccsBz"|VW|��|��|��n|��|��|��0dS)z>Return a context manager making sure the pool closes properly.N)�close�joinZ	terminater�r�@/usr/lib/python3.9/site-packages/pip/_internal/utils/parallel.py�closing.s
�r�)�func�iterable�	chunksizercCs
t||�S)z�Make an iterator applying func to each element in iterable.

    This function is the sequential fallback either on Python 2
    where Pool.imap* doesn't react to KeyboardInterrupt
    or when sem_open is unavailable.
    )�map)rrrrrr�
_map_fallback;s	rcCs<tt���}|�|||�Wd�S1s.0YdS)z�Chop iterable into chunks and submit them to a process pool.

    For very long iterables using a large value for chunksize can make
    the job complete much faster than using the default value of 1.

    Return an unordered iterator of the results.
    N)r�ProcessPool�imap_unordered�rrrrrrr�_map_multiprocessGs
rcCs>ttt���}|�|||�Wd�S1s00YdS)z�Chop iterable into chunks and submit them to a thread pool.

    For very long iterables using a large value for chunksize can make
    the job complete much faster than using the default value of 1.

    Return an unordered iterator of the results.
    N)r�
ThreadPoolr
rrrrr�_map_multithreadUs
r!)r)r)r)�__doc__�__all__�
contextlibrZmultiprocessingrrrZmultiprocessing.dummyr �typingrr	r
rrZpip._vendor.requests.adaptersr
rrZmultiprocessing.synchronize�ImportErrorZ
LACK_SEM_OPENZTIMEOUTr�intrrr!rrrrrr�<module>sJ

��
����